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Preface

This report proposes to investigate and apply various quantal re-

sponse models to determine the applicability of these methods on data

generated by the Avionics Evaluation Program. It is hoped that this

effort will be a basis for moving quantal response methods out of the

realm of bio-assay and into more general applications.

I wish to acknowledge my indebtedness to my thesis committee, Dr.

Joseph Cain (reader), and to the ever patient Dr. David Barr, whose sug-

gestions and guidance were invaluable to this effort. I would like to

give a special thanks to Dr. Thomas W. Copenhaver, of Wyeth Laborator-

ies, for his support of this effort, and particularly for the computer

source code and program deck which he gave me. I would also like to

" o thank my wife, Li Hua, for her support and understanding during this

effort.

Larry 6. Kehl
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Abstract

The United States Air Force has, over the past decade or so, in-

vested much time and money in computer simulations and models. At the

most basic level almost all of these simulations are input-output type

procedures; variables of interest are changed to determine the effect

they have on some other factor. This process is virtually indistin-

guishable from dose-response problems in bio-assay, hence, is capab' ? of

being analyized by the same methods used in bio-assay. The two mos

commonly used techniques are probit and logit, but there are many other

available techniques. An alternative to performing numerous, and som',,-

times redundant, simulations is to use these techniques whenever pos-

sible.

0Data from the Avionics Evaluation Program (AEP) were used as the

basis for estimating the probability of aircraft abortg based on the

mean-time-between-failure (MTBF) of various equipment items, using four

quantal assay techniques. The fits obtained from these models were cam-

pared to the more popular probit and logit results previously obtained

by Dr. David Barr.

vi
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**, V,* EXPLORATION OF DOSE-RESPONSE TECIIIOUES WITH SOME

APPLICATIONS TO A SIMULATION PROBLEM

I INTRODUCTION

Backoround: An Analysis Problem

It is common for analysts to use computer modeling and simulations

in problem solving. The reasons for using simulations are numerous.

However, simulations usually help the analyst determine the response of

some system to a change in that system's environment, or operating char-

acteristics. In other words, simulations help the analyst describe, pre-

dict, or simply understand the behavior of a complex system under a given

set of circumstances.

There is no doubt that simulations are useful, but is it always

practical or necessary to use them? It is not hard to think of situa-

tions where the answer is no, and the specific situation described be-
.

low is just one such example.

My last project as an analyst for the Avionics Laboratory at WPAFB

was to run computer simulations of a mission analysis program (Appendix

A). The project was to determine the mission effectiveness of the ATF

(advanced tactical fighter) with a mixed suite of existing and concep-

tual (new) avionics. One of the measures of effectiveness was aircraft

aborts due to failure of a particular piece of equipment, or subsystem,

with varying MTBFs (mean-time-between-failure).

1
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I performed several thousand simulations for this analysis. Unfor-

tunately, even with such a large number of simulations all I had was a

dozen or so data points (i.e. MTBF-abort pairs) for each piece of equip-

ment. If there was a need for an abort rate at some MTBF not previously

considered then either another simulation, or some estimate based on the

existing data would be required.

Since it was not, and usually is not, practical to run computer

models for every conceivable point it was obvious that there was a need

-; for some curve-fitting technique. It was at this point that my working

group contacted Dr. David Barr (Air Force Institute of Technology) and

asked him to study the problem. He determined that there were tech-

niques for I...estimating probabilities when given a set of relative
,.'

Sfrequencies, each obtained as the response of a system to a level of
4..

quantitative stimulus, known as probit and logit analysis" (Ref 3:1).

Probit (probability unit) analysis originated in biology and'its

application in that area is widely accepted. The following is the gen-

eral concept of probit (parenthetical matter is my own):

An analyst is interested in the effect of some drug
(failure rate) on the survival (aborts) of a large
number of insects (systems). One possibility is

.1" that each insect (system) survives until a certain
critical dosage (MTBF) is reached and that they all
die (abort) as soon as this limit is surpassed; but
that is an extreme case. It is much more plausible
that the critical level varies from one insect (sys-
tem) to the other according to a certain distribu-
tion. When there are many independent factors de-
termining the critical level for each insect (sys-
tem), the central limit theorem may be used to jus-
tify the choice of the normal distribution. Thus,
when p is the proportion of insects (systems) killed
(aborted), the analyst applies the probit transfor-
mation y=F(p) and he then proceeds to express y
linearly in terms of the dosage (MTBF) of the drug.
(Ref34 :638).
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If you were to plot these dose-response (input-output) curves with
4-

* " the dose on the horizontal axis and response on the vertical axis the

curve is S-shaped, or sigmoid, and is similar to the cumulative distri-

bution function.

...it seems natural to try to fit a distribution
function to the points... The probability curve
which came to mind first was the normal, or Gau-
ssian, distribution function; since negative val-
ues... have no physical interpretation, it made
sense to make a logarithmic tra ormation to the
lognormal distribution. This r ulred in what is
known as probit analysis. A s lar approach,
in which the logistic growth c, -e is used in place
of the Gaussian distribution f *ion, is known as
looit analysis (Ref 3:5).

Dr. Barr's work (Ref 3) on the problem of curve-fitting showed po-

4tential for the application of these statistical techniques to the 'in-

put-output' type problem discussed earlier. However, while these tech-

niques worked well for some equipment items, it worked only marginally

well for others, and not at all for still others. This leads to the

following question; are there other dose-response techniques available

to analyze the existing data (Appendix C) which would give either better

fits, or at least fit those items for which the probit and logit methods

were only marginal? This question is the underlying basis for this ef-

fort.

Constraints on the Analysis Problem

Before reviewing existing dose-response techniques (Section II) it

is necessary to state some constraints of the existing data which limit,

or eliminate the use of certain techniques. It should be kept in mind

that these constraints are limiting factors only for this effort; future

3



efforts may be well advised to use techniques which I could not

The number one constraint is the amount of existing data, 152 data

points total for 17 equipment items. This averages out to about nine

data points for each equipment item, and for some analyses this would be

sufficient. Unfortunately, 18% of this data yields abort rates less

then 3; this is known as the low-dose range (usually considered < 8.18)

and presents problems of its own for extrapolation over the rest of the

curve.

While it would have been convenient to run more simulations to ob-

tain a wider range of abort rates, it is no longer possible to do so.

The AEP model (Appendix A) was removed from use just prior to this ef-

fort. But even before removal the model had undergone extensive modifi-

*-'- cation and enhancing, which would have made any comparison of new and

old data suspect.

The second constraint, while not a problem, eliminates the use of

techniques known as mutihit and multistage (Refs 2, 17:1277-1278).

These models will be discussed in Section II. Basically, however, the

problem is that unlike living organisms, which can be exposed to a sub-

stance then periodically re-exposed (rehit) until a tumor or other re-

sponse is obtained, a hardware item, within the AEP model, fails based

only on its designed (ore time) MTBF.

A third constraint again stems from the fact that performing new

simulations is not possible, which eliminates the use of sequential

methods. As the name implies, this technique involves running a simu-

lation, or experiment, and then performing another simulation at either

a higher or lower level of the stimulus based on the previous results.

You then repeat this procedure until obtaining the results or accuracy

4
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desired (Refs 8:1-2, 34).

-'." The last set of techniques which cannot be used are known as 'time

to occurrence, or time to response' (Refs 9:161-163, 17:1284-1286).

C Since data is not available concerning when items failed there is no

ready data base on which to test these techniques.

Formal Problem Statement and Objective

In a preliminary analysis effort performed by myself (Ref 26) for

the Avionics Laboratory it was of interest to determine the effect of

various avionics equipment MTBFs on the abort rates for the ATF. Due to

time considerations, complexity of the simulation model, and working

group resources it was desired to find some mathematical tec: e for

predicting abort rates over a range of MTBFs, using a limited number of

simulations for each equipment item.

A study conducted by Dr. Barr (Ref 3) showed the applicability of

using quanta) (dose-response) assay techniques for determining these a-

bort rates. In particular, he was able to fit most of the 17 equipment

items under consideration using the probit and logit models.

It is the purpose of this effort to determine what other quantal

l. assay methods exist which may fit the avionics equipment in question to

dose-response curves. More specifically: what quantal models are avail-

able that will estimate the probability of an abort given an MTBF for a

particular piece of avionics equipment using the existing data of Appen-

dix C? The answers to this question have implications for analysts in

general, particularly where the analysts' situation involves the use of

simulations.

.

'p

.- €1 5

" 1A



Overview

.- Section II contains a summary of the types of existing quantal

(dose-response) models. A brief description of each type is given a-

long with the mathematical development where applicable.

In Sections III thru VI the one-hit, a generalization of the probit

and logit, quantit, and a symmetric and asymmetric transformation are

used to analyze and fit the existing sample data. In these sections the

models are explained along with techniques for implementation. Also

discussed are special considerations and limitations of these models as

well as results and interpretation of the results.

',
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II Review of Dose-Response Methods

Any system that yields a response to a given stimulus can use the

methods listed below. The almost exclusive use of these methods in bio-

assay is no reason for their non-use in other areas. The only real con-

'. straint is that the system response variable must be a random variable

that takes on only one of two values; success or failure, 6 or 1, yes or

no, etc., .such observations are called binary; an older term is

K' auantal" (Ref 12:1).

.There are numerous quantitative theories that attempt to relate the

frequency of response to the level of stimulus. Crump (Ref 9) and Fish-

bein (Ref 17) categorize the methods most commonly used into two major

S 0types: dichotomous response models and time-to-response models.

Dichotomous ResDonse Models

One-Hit Model and Extensions. The most elementary dose-response

" model is the one-hit, or linear, model. 'The one-hit model is obtained

by assuming that, with the exception of xd hits at dosage d, the proba-

bility of exactly x hits is given by the general term of the Poisson

distribution... " (Re4s 17:1277, 33). The general term is as follows

P(Xx) a (xd) XexpC-Xd)]/x! (2.1)

YClearly if, as in our case, only one hit is required to produce a re-

sponse then the above collapses to

P(d)=P(x.l)=-P(x{l)u=-exp(-Xd) (2.2)

7
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where X is the process rate, or rate of change of the dose response

• ,curve at d=.

-The point was made by Fishbein (Ref 17) that if you are working in

the low dose region (pC8.1) then Xd is small and P(d)=Xd. This implies

a simple linear model where the response is directly proportional to the

dose, with slops ,. Since all of the sample data (NTBF-abort pairs) is

well within the low dose region this is one possible model to use.

The natural extension to the one-hit model is the multihit model.

This model considers that if at least K hits of a dose d are required to

produce a response then (Ref 17:1277)

k-1

P(d)= I- (Xd)Iexp(-Xd)
I:0

"ho

Note, if K is allowed to take on non-integer values then

P(d)- M R-lext(-t) dt
.0 (k-)!

*Rewriting this as:

.

P(d-P(d;k X)- ,kk-a r(k)

'

yields the generalized multihit dose-response model, or more simply a

gamma distribution with scale parameter ), -id a shape parameter K (Ref

33:342).

Another extension or further generalization, if you like, of this

stochastic process is the multistage model, ... where the lifetime

• %mB
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probability of tumor induction can be expressed as

P(d)m1-exp[-(a J-Pld)(a 2-P2d)... (Vk-Pkd)3 (2.3)

K. where i ?0, P-o, and K represents the number of transitions or muta-

tional stages in the carcinogenic process" (Refs 17:1278, 2). This

model has no application to our hardware items since the dose (HTBF) is
applied only once (as an input parameter, which remains fixed, to the

AEP model, see Appendix A), and where the above would collapse to:

P(d)-1-exp[-(a-Pd) ]

However, the multistage model could be useful if you thought about

*" failures of an item which did not cause an abort as the mutation. Then

after repairing the failed item it is replaced in the aircraft and the

0 aircraft is flown again (note that the repair restores the MTBF and is

the 'rehit' of the item). This process is repeated until a failure (the

number of failures would have to be determined by some stochastic pro-

cess) causes an abort (tumor).

In an article by Guess and Crump (Ref 19) there is one multistage

1model worth separate discussion. It is a general polynomial model for

dealing with low-dose extrapolation, and is the only multistage model

-which is well documented and supported in a series of articles (by Guess

" and Crump).

To obtain this model first consider the following:

, K,

P(d)=1-exp[- i (a+Pi(d) i)j

...it is assumed that K )I different events must oc-
cur in a single cell be ore a cancer (response) is

.1,
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initiated ... a. is the rate at which an initiating
event for the ith stage occurs due to a spontaneous

* (i.e. not dose related) carcinogenesis, and P.is the
per I th power dose at which an initiating evint for
the ith stage occurs due to dose-related carcinogen-
esis (Ref 19:17).

Now rewriting the above the model becomes

Pf (d)zP(d)u=-exp(-f(d)) (2.4)

where

K
f (d)- I f i d l  f i ill

isO

and where f is a polynomial with nonnegative coefficients. K is the de-

gree of f, and along with the coefficients of f must be estimated (Ref

19:18).

Note the similarity of Eq (2.4) with the general multistage model

in Eq (2.3). This model, however, uses a general polynomial of unknown

degree to fit the data. This model is of particular interest if one is

working in the medium, or high-dose range and then wishes to extrapolate

to the low-dose range for risk estimates (Ref 19:21-22).

To construct confidence intervals Crump et. al. have

...developed 'envelope curves' which are constructed
for both risk and dose ... these curves are con-

structed by binomially simulating 189 sets of dicho-
tomous dose-response data, representing 106 indepen-
dent replications of the same experiment ... (with)
the same set of test doses... (Ref 10:440).

Guess and Crump (Ref 26) also develop maximum likelihood estimation

techniques for this polynomial model.

Nl1



Probit. Loait. and Generalizations. The two most commonly used

methods of analysis of binary data are probit (Ref 15) and logit (Ref 5,

12). For the probit (log-probit) model the probability of a response

being induced by a stimulus (dose) d is given by

I..

P(d)= 0(a+Pl og d) (2.5)

where # denotes the standard cumulative Gaussian (normal) distribution.

The logit model like the probit model leads to an S-shaped dose-

response curve; its equation is

P(d) - I/[1+exp(-(c+Plog d)) (2.6)

It approaches zero response as dose d decreases more slowly than does

the probit curves since lim(P(d)/dP)=constant as d-* (Ref 17:1279).

Dr. Barr's work (Ref 3) on the curve-fitting problem, using probit

and logit, yielded the values in Tables I and II for goodness-of-fit

based on chi-square tail probabilities for the 17 equipment items con-

sidered. These values will be the bench mark against which all other

model fits will be tested (primarily since the probit and logit models

are well developed and widely accepted).

These fits for the probit and logit are not really very different.

This is somewhat expected since according to Finney the logistic and

normal distributions are "... scarcely distinguishable ... between re-

sponse rates of 6.91 and 9.99..." (Ref 16:406).

.There is a method described by Chambers and Cox (Ref 8) which may

better discriminate between the logit and probit models. However, it

depends on having a few dose (MTBF) levels then performing a test which

.. U



Table I

Chi-Sauare Tail Probabilities
for the Probit

1Um Probit
Bus .9564
IMFK .9479
CDRT .8926
MFK .878
SMT .7812
HIMP .7784
Processors .5844
ART .4550
SLU .3995
MPOG .3674
MPDS .3592
DEK .1614
DSMU .1393
HUD .1353
INS .0834
SCU .0445
MTU .08697

Table II

Chi-Sauar. Tail Probabilities

n .o.it
IMFK .9754
CDRT .9728
Bus .9641
MPDG .9675
SMRT .8253
Processors .8241
MFK .8023
tIP .7119
SLU .4527
ART .4284
MPDS .3686
DEK .3617
HUD .1436
INS .6668
DSM',J .6649
SCU .8736
MTU .8487

-12_ ,
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will determine the appropriate spacing of the dose (MTBF) levels for

this discrimination. Performing more simulations is impossible at this

time, hence this method cannot be used.

The vast majority of the literature encountered in this review was

in the biological sciences, and thus there was a propensity to find the

LD50. LD5 is known as the 58% lethal dose, or the median effective

dose. While this effort has no interest in the LD5S (LDO1 or less would

be more informative for design engineers) it is worth mentioning since

it brings up the matter of transformations.

Finding the estimates of ll, and 62 for the distribution given by
.4

Eq(2.5) is generally by means of the Drobit transformation of the exper-

imental results. "The probit of the proportion P is defined as the ab-

scissa which corresponds to a probability P in a normal distribution

with mean 5 and variance 10 (Ref 15:21). That is, the probit of P is Y,

where
..

-1/2 ~Y.5
P- (210 -/ O exp-(uZ/2) du (2.7)

This transformation from proportions to probits has the effect of

straightening out the normal S-shaped curve. Comparing Eqs (2.5) and

(2.7) shows that the probit Y is related to dosage d by the simple lin-

ear equation Y--5(d-)/41 (Ref 15), and now to estimate LD59 you simply

find the value of d which gives Y-5. The usefulness of this transforma-

tion is to simplify mathematical calculations.

There are numerous transformation techniques available (Refs 4, 6,

22). They depend solely on the models used, the experimental data, comp-

utational considerations, convenience of their use, and ability to in-

13
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terpret results meaningfully.

A generalization of the probit and logit models is mentioned in an

earlier paper by Prentice (Ref 31) and completely detailed by Prentice

in a latter paper (Ref 36). This model takes the form of

P(d) ff(w) dw (2.8)

where y-(d-P)/d and P,d are to be estimated. The pdf, f(w), has the

following form

f(w)= exp(wm) (+expow) (-m-n) (2.9)
"(m,n)

"'" where P is the beta function. The logistic model, Eq (2.6), is given by

m-n=1 and converges to the normal distribution as m,n-40. Other special

cases for various m,n values are also given (Ref 39:762). This model

will be discussed more fully in Section IV where it is applied to the
,'2

sample data.

Note this model is really nothing more then a beta of the second

kind distribution with the transformation u=exp(w), 8(u. To show this

note that

f(u)-f(w) Idw/dul

uM/1(1+u) (m+n) P(mn) u]

(M-1,) (mn
S" u l+u) (n m,n)]

or a beta of the second kind.

14
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Quantit Analysis. In a paper by Copenhaver and Milke (Ref 11) a

- " new technique is offered for analyzing quantal responses, which they

4call Guantit analysis. The underlying distribution is called the omega

distribution by Copenhaver and Milke and is characterized by a cdf of

F(x(q) )=q (2.19)

and a pdf of

f(x(q))1-12q-1 1v+I

where @(q<1 and 0-1 , and where[ cq
x(q) dz/f(x(z)) (2.11)

1/2

As noted by the authors this distribution is a double exponential when

0 'sO, logistic when v-I, and uniform for the limiting case as v-W.

If we let P be the probability (or proportion) of response(s) at

dosage x., and we let P.=F(aPx.) then the tolerance distribution is1I 1 1

given by

-4+.

f(cr+pxi)=I - 12p_ iIv+ (2.12)

and

R v+1
a+IPx#i h(P.) I1/(1-12z-1I ) dz (2.13)

ZY~ 11/2

hv(p.) is termed the "quantit" of pi(Ref 11:178). The computations to

obtain the parameters are similar to that for the model presented by

Prentice which is discussed in Section IV. Section V, however, will

discuss more fully the individual computations for the Quantit model,

. 1
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and the application of it to our sample data.

Aranda-Ordaz Family of Transforms. One of the reasons for first

using the logit model in the analysis of binary data is its simplicity,

since the logistic transformation used to obtain the logit method is a

linear function of the parameters.

The logistic transform is simple, but is it adequate? Aranda-Ordaz

(Re4 1) developes simple test procedures to determine both symmetric and

asymmetric departures from the logistic distribution. He also develops

two families of power transforms which are alternatives to the logistic.

These symmetric and asymmetric alternatives each include the logistic as

a special cases.

The symmeteric family, which essentially yields the same results

when working with either successes or failures (Ref 1:358), is given by

Equation (2.14)

TX()- (2A) *~-1-O) (2.14)

and in the limit is the logistic when X-0 and a simple linear for x=1.

Now solving Eq (2.14) as a function of 1 yields:

S" 1 S -1)

.( 1+)r/2 )1/x IX1/2 1( 1 (2.15)

(14X/2) 1/X + ( 1-Xlf/2) )/

He assume that If has a linear expression in terms of
some parameters associated with the explanatory var-
iables considered in a specific situation... If we

.1• 
o • 

"•
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fit by maximum likelihood a linear expression for '

for a range of values of X we may consider the max-
h --" imized log likelihood as a function of x and hence

derive not only the maximum likelihood estimate &,
but also determine which values of t provide an ac-
ceptable fit. (Ref 1:358).

The aysmmetric model is given by the family (assuming log I(O)=%):

" (0) -((1-)-X-)/X (2.16)
-X

This is the logistic model when X-1, and again solving as a function of

I we get

(1-( 1+X exp(fl) -1 ' (X exp(f))>-1

-i otherwise

The same assumption about 1, and the same procedure as above is used to

obtain values for x.

There are tests (Ref 1:360-361) to determine if there are any sym-

metric or asymmetric departures from the logistic. The attractiveness

- of these tests are that they can be conducted using "...(the values)

computed from the output of the logistics fit.* (Ref 1:368). Another

by-product of these tests, specifically the symmetric test, is that it

4Ma permit ... discrimination between the logistic and probit mod-

els...3 (Ref 1:361).

The above models and tests will be fully discussed and implementted

in Section VI. In that section I will try to discriminate between the-0

A logistic and probit fits already performed by Dr. Barr (Ref 3).

"

',
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Time to Occurrence

According to Fishbein 'The second type of dose-response modeling

that is receiving increasing attention deals with the distribution of

the 'time to occurrence' (latent period) and its relation to dose.' (Ref

17:1284). Unfortunately the few models which were discussed by Fishbein

(Ref 17) and Crump (Ref 9) all had criticisms leveled at them by the au-

tthors and others. Since these models are not well accepted, and since

(as in the multistage models) new interpretations of the dose-response

processes are needed this type is mentioned only for completeness.

In general this type of model could be defined as 'the time of

death (abort) from the type of cancer (failure) of interest or as the

time of the first appearance or detection of a particular tumor type'

(Ref 17:1284), parenthetical matter my own.

,Is
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III The One-Hit Model

The simplest curve fitting technique, if we exclude drawing a line

between two points, is the simple linear regression model. The one-hit

model is nothing more than a linear regression model with a logarithmic

transform of the data. Regression is a well understood and straightfor-

ward technique, and as such needs no separate discussion, except for one

special consideration discussed later (regression through the origin).

If we assume that it takes exactly x failures (hits) of some item

to cause an abort for a particular MTBF (dose), where the failures are

independent, random events, then we can use the Possion process Eq (2.1)

to describe the probability of an abort. However, as mentioned before,

if it takes only one failure to cause an abort then the general Possion

-. term collapses to Eq (2.2), or P(d) = 1-exp(-xd) where X is the pro-

cess rate.

It is easy to verify that if P is small (P < 9.1) then P(d) Xd.

This implies that for small P a linear equation going through the origin

describes the data. While our data is much less then 19%, it comes from

high MTBFs (doses). This situation is exactly the opposite of the usual

bio-assay problem where a low dose causes a low response rate.

* Looking at Figure 1 shows that it makes no sense to force the known

portion of the curve (solid line segment) through the origin. This is

. because this portion of the curve has a negative slope. If we flip the

N" curve around, as shown in Figure 2, then we might be able to force the

-i .- 1
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known portion of the curve through the origin and use the simple equa-

.tion P(d)=xd. However, we cannot use this method since P is no longer

small and, hence, not approximated by Xd. This is no handicap though,

since Eq (2.2) is not hard to apply directly.

Now if we let P be the proportion o4 non-aborts to launches then

9-1-P, and Eq (2.2) can be written as:

0 a exp(-x.d) (3.1)

.9

and taking logs of both sides yields Lnq = -Xd, or

-Lnq = Xd (3.2)

To apply this linear model means forcing the equation through the

origin, since there is no constant term. The Control Data Corporation

Cyber 750 computer implementation of the Statistical Package for the

Social Sciences (SPSS) (SPSS is widely available) allows one to force

an equation through the origin using the appropriate option (option 19)

in the regression procedure. However, each of the correlation coeffi-

cients, R2 and adjusted R2, are unadjusted for the mean when using op-

tion 19. But, SPSS displays an extra line of output with these values

adjusted for the mean as suggested by Theil (Ref 34..76).

When forcing an equation through the origin using SPSS one should

first determine the appropriateness of this option. In our case it

makes perfect sense, since we would expect to have a 'continuous- abort'

for an MTBF of zero for any item which, by itself, causes an abort. An-

i-" *A- other item for consideration is the adjusted for the mean correlation

21
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coefficients, R2 and adjusted Rs. If these values should happen to go

negative then forcing the equation through the origin is not appropriate

(Ref 34:177).

After performing an initial regression on all 17 equipment items

(Appendix C), and observing that the correlation coefficients adjusted

for the mean were &ij negative, a nw approach was undertaken. In-

stead of using the MT8F the simple transform d',Ln KTBF was tried, or

-Lnq=cld',xLnd. If we now solve for P we obtain:

P a 1-(d)x (3.3)

' IWith Eq (3.3) note that the value of the MTBF can approach but not

equal zero. Since there is no reason not to allow the MTBF to equal

zero, at least in theory if not actual practice, I applied another sim-

o. ple transformation, really a translation. The translation was to simply

add one to the MTBF before taking logs, yielding:

P - --exp(-x Ln(d ))

or

P - 1-(d¢1)" (3.4)

Besides letting the MTBF take on all non-negative values Eq

(3.4) has the property of being a known distribution, the Pareto distri-

bution, translated by a value of one.

Using Eq (3.4) and performing regression on all 17 equipment itms

gave acceptable fits for all of the items. The determination of accept-

ability was by the usual methods; checking the F-test values, correla-

22
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tion coefficients, residuals, etc. Listed below are the equations ob-

~ tained from the regression procedure (remember P is the proportion of

non-aborts).

ART P - 1-expC-.94429329 Ln(d.1

Bus P - 1-expC-1.6278328 Ln(d.1)]

CDRT P - I-expC-1.6855558 Ln(d. 1))

DEK P - I-expt-.97513613 Ln(de1)1

DSMU P - 1-txpE-.95996496 Ln(d.1)J

HUD P - 1-*xpC-.91612055 Ln(d+D1)

INFK P - I-expl-1.1425878 Ln~d~l)3

INS P - 1-expC-.9028411 Ln(d.1)J

NFK P - 1-expC-1.6553776 Ln(d* 1

MMP ~ P -exp[-.92132193 Ln(d+l)3

d IPDG P a l-expC-1.2435246 Ln(d* 1)

NPDS P - 1-exp[-1.2155860 Ln(d*1)]

MTU P = I-expC-.80616S25 Ln(d+l)3

Processor P - I-exp[-.84667590 Ln~deD1

SCU P - 1-oxpl-.93728160 Ln(d*1)3

*SLU P - 1-exPC-.84538133 Ln(d+l)]

SMRT P - I-expC-.P76211668 Ln(d+1)2

Note the clear trend in the above equations for the coefficient

to cluster about the value of ).-I. Dr Barr (Ref 3) using probit and lo-

git had no such trend for any of his coefficients.
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Determination of the Fit and Normality Assumptions

During the preliminary AEP analysis (Ref 26) there was a real con-

cern about the random number generator used in the AEP model. For a few

of the equipment items in Appendix C there appears to be significant de-

partures from the general trend. There is a way to determine if there

are departures, at least for the normality assumptions, when using re-

gression. This is by performing residual analysis, which is well known

and easy to perform using SPSS. However, for a detailed description of

residuals and residual analysis, the reader should see Theil (Ref 34).

The initial SPSS residual plots for the 17 equipment items indi-

cated that a few data points were possible 'outliers'. But, further in-

vestigation using a t(n-2) distribution, since n was small in all cases,

revealed no real outliers. The residual plots appeared to show no het-

0, eroscedasticity, or more simply the variance appeared to be constant. I

emphasize the word appear, since the residual plots had as few as six

points, and with so few points it would be misleading to state that

there was absolutely no heteroscedasticty. However, in general, there

were no significant departures from normality.

To determine how well this model compares with the probit and logit

methods I used the contribution to the chi-square tail probabilities, as

':. did Dr. Barr.+I
If the true probability of an abort for a given lev-
el of MTBF is known to be p, and if the number of
launches is n, then the number of aborts has a bi-
nomial distribution with parameter (n,p); if n is
large then the number of aborts can be approximated

by a normal distribution with mean np and variance
" """ np(1-p). (Ref 3:8, also see 14:229-238).

24
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Hence, if the normal approximation is good for the abort pro-

cess then the square of this will be chi-square distributed. That is,

if we let x be the number of aborts then'...(x-np)/Enp(I-p)]/ will have'S

a normal distribution..., and so (x-np) 2/np(1-p) will have a chi-square

distribution... (Ref 3:8). Note, if we have K levels of the MTBF the

chi-square distribution will have K-I degrees of freedom (df). We lose

one degree of freedom since we must estimate X.

The above chi-square distribution, and hence the validity of using

chi-square comparisons, hinges on whether or not the normal approxima-

tion of the abort process is good. I bring up this issue since the

average p for our data is approximately .002, a very small value, and

this implies the underlying binomial process is extremely skewed to the

right. Also the theory is for large n, but how large should this n be?

Our n was, on average, approximately 5308; is this large enough?

There is an excellent paper by Raff (Ref 32) with some easy to use

graphs for determining the appropriateness of using a normal, Possion,

etc. approximation to a binomial process. Unfortunately his graphs were

of little help in our case since p was so small, and n extended beyond

the range of his graphs.

I had to insure that the normal approximation of the underlying bi-

nomial process was good, or the chi-square comparisons would be meaning-

less. However, the test for normality was simple. First, I generated

106 binomial random variables with p-.8024 and n=5300. Next I let

1/2
y(x-np)/[np(1-p) 1 , where x is the binomial random variate generated.

25
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Then, using the Kolmogorov-Smirnov test in SPSS, I tested whether y was

standard normal distributed. The results were that I could find no evi-

dence that the abort process was not normal; hence, I could assume theF chi-square comparisons would be valid. The results of the one-hit chi-

-% square fit values is given in Table II1.

,%

Table III

Chi-Sauare Tail Probabilities
Nfor the One-Hit Model

Item Probability
Bus .9584
CDRT .9543
MFK .6789
SLU .5852

" IMFK .4935
ItP .4430
DEK .3655

.4 MPDOG .2127
ART .194
SMRT .1313

.' Processors .1279
MPDS .0450
INS .0187
HUD .8695
HTU .9628
DSMU .8087
SCU .6682

Comparing Tables I and 11 with Table III it is seen that the one-

..' hit model gives a better fit for the SLU than either probit or logit.

2 Also the one-hit fits the CDRT and DEK better than the probit. However,

with the exception of the SLU, no item in Table III had a better fit

than that given by logit. Overall, fits using the one-hit model were

26



much worse than those obtained by either logit or probit.

Conclusions and Remarks

The one-hit method is simple and easy to use. Any analyst with

only a programmable calculator (and even many cheaper models) can per-

form linear regression. The methods and theory of regression can be
44

found in almost any elementary statistics text, as well as many other

places. However, the simplicity of the one-hit linear model should not

*1' be the only reason for its use. I found that while the one-hit model

fit the data well, in the regression sense, it did not fit the data well

by the criterion of the chi-square tail probabilities. More simply, at

least two other models fit the data better than the one-hit.

The one-hit model is a valid technique, since it is nothing more

than linear regression, but it is not the only technique. Any analyst

wishing to use the one-hit model should insure that it is the best tech-

nique for his/her situation.

4
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IV A Generalization of Probit and Locit
r.".1 P..

Previous sections indicate that the most widely used and explored

dichotomous response models are the probit and logit. In the literature

reviewed scarcely an article ended without some mention of at least one

of these models. However, discrimination between these two models is

often difficult.

Some consideration (...Chambers and Cox E1967]...)
has been given to the choice between probit and lo-
git models with the general result that extremely
large sample sizes are required to effectively dis-
criminate between the two. Little success, however,
seems to have been achieved in the development of
sensitive tests of fit for probit and logit models
or in the development of alternate classes of models
when the usual models prove inadequate (Ref 36:761).

Hence, the almost indistinguishable results of the chi-square fits for

probit and logit obtained by Dr. Barr (Ref 3) are not surprising (Refs

8, 16:486). "This raises the question as to whether tests based on more

specific alternatives may be more sensitive' (Ref 38:762).

One method of a goodness of fit procedure is to embed the models

into a more general parameteric family of models and then test the spe-

cific models, using ordinary likelihood procedures, relative to the gen-

eral one. (Refs 7, 38). This is exactly what Prentice (Refs 38, 31)

does.

The ModelI

The probability of response (abort) for a given dose d is given as

iPld) 4 (w) dw (4.1I)
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where y=(d-P)/<f and 11, 0 are unknown and where the family is given by

."

f(w) = exp(wm)( exp w) (4.2)

P(m,n)

where P is the beta function, and mn ) S.

If m-n-1 then Eq(4.2) is f(w)-exp(w)/(l + exp W)2 or rewriting

the response P(d) - exp(y)/(1 + exp y) , which is a logarithmic trans-

formation of the beta of the second kind. Prentice (Ref 31), after some
4,

reparameterization, shows that Eq(4.2) converges to the normal distribu-

tion as mrn-w.

Other limiting special cases are the extreme minimum
value (mu1,n-.) and extreme maximum value (m-m,n=1)
densities ... other limiting distributions are dou-
ble exponential (m-*,n-,), exponential (mfe,n-*),
and reflected exponential (m-*onm) (Ref 30:762).

The density function given by Eq(4.2) is symmetric along mn or

P(d) - 1-P(d). Equation (4.2) is also "negatively skewed for m<n and

positively skewed for m~n" (Ref 38:762). Another characteristic of this

"'. density is that it either has narrower or fatter tails than the logistic

depending on whether m)l or m(I respectively (Ref 7:1889). "Note that

CEq 4.2) allows the choice between alternative models, such as the pro-

bit and logit models, to be reduced to the choice between values in a

single model' (Ref 38:762).

Computations for the Model

As was the case for the one-hit, and quantal response models in

general, the fitting of the distribution to the resulting sigmoid re-

29
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sponse curve is based on the conditional probability of the number of

responses x given dose d, or:

P(xld) - pX (1 p)n-x (4.3)

where d is the dosage, n is the number of individuals at dose d, x is

the number of positive responses, and P is given by the distribution

function.

The likelihood function of Eq(4.3) is

k n.\ x.i n.i-x.
L 17L' P1 (1-P) 11(4.4).. X i x

Now suppose we have xi responses for ni individuals at dose d.
i-1,...,k. Also let P(d) represent the probability of response at

dose di, where P depends on = (e1, ... ,t), then the log-likelihood

for 0 is simply

'4 k
E=[xi log P(d.) + (n.-x.) log Q(d.)J

"ul 1 1 1 1 1

where 0-1l-P.

The derivative s = dj/dO has Jth component

k
djd - Ix./P(d i) - (n.-xi)/Q(d.)] dP(di)/d$.J (4.5)4"~ .1 1 1J

and the (j,h) element of the information matrix is

. n i/P(d )(d ) ] [dP(di)/d$J 3 dP(di)/dOh ] (4.6)
is' f

- . . The information (Fisher information) matrix is the matrix of negative

:3
* qi'*~'~~*'m~' %.V~~*y.~. .S .



expected values of all second partials of the log-likelihood function or

I n(0) =-E 0 C(x 10) 1

For more about the information matrix the reader is referred to DeGroot

(Ref 14) section 7.8, and Theil (Ref 34) section 8.4.

As noted by Prentice calculations for Land its derivatives are

simple provided P(d) and dP(d)/d0 are easy to compute. If P(d) is given

by Eq(4.1) then a convenient method for computing P(d), with underlying

density given by Eq(4.2), is I(z; m,n)/P(m,n) where z=exp(y)/(14exp y)

and I represents the incomplete beta integral (Ref 38:76a). If we let

06(l,o1,m,n) then 'the derivative of P(d) with respect to 0 has straight-

forward components dP(d)/dL -07f(y) and dP(d)/dd= elyf(y)' (Ref 38:

763). However:

Y

dP d) /c~ (d I ogf (w) /cn) f (w) dwa (4.7)

and also

dP,(d)/dn (fd logf(w)/dn) f(w) d.. (4.8)

may not have closed form solutions. Prentice suggests that Ofor any

fixed (m,n) a straightforward Newton-Raphson procedure can be used to
A A

compute I1rzl(m,n) and 6'4 (m,n)' (Ref 38:763).

n Performing the calculations for PL and -1 as functions of m,n are, at

least in theory, quite simple. First consider

0'(010 )where 0"- 090) and 0=(m n)
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and

(s!' 2) where s'= (dI/dit,dj/d0 and s= (dI/dm,dt/dn)

Next partition the information matrix 1(0) so that li(0) is the upper

2 by 2 block of I(0). Next for fixed eo 'a Newton-Raphson procedure-2

iteratively updates trial value0 to 0 +1 (e)-is, where 1 (0)-1

and s are evaluated at 0 , o until convergence to the MLE 0 is
1 -"2 PO I

reached' (Ref 30:764). Note that the asymptotic covariance matrix of

is I (0) evaluated at (9 ,g).

We now have a method for determining, by MLE's, the parameters

-. (l,o). However, as noted before, difficulty in calculating P(d) with

respect to either m or n hampers 'the use of asymptotic likelihood

methods for simultaneous inference on all four parameters (0,,m,n)

(Ref 38: 766). The use of a grid of (m,n) values may overcome this

difficulty. That is, you maximize the log-likelihood for numerous

fixed values of (m,n).

There are some convenient three parameter submodels of Eq(4.2) for

which the estimation is more direct. The specific case of n=1 yields

P(d) = Eexp(y)/(l + exp y)Jm (4.9)

the derivative of which is

dP(d)/dm = P(d) log~exp(y)/(l + exp y)]

Now simultaneous inference on all three parameters (P,,dm) is easily

performed by a slight modification to the previously mentioned iterative

procedure.
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Computational Difficulties

In theory any of the above procedunes, the grid search over (m,n),

the three parameter model, or even simultaneous solutions for all four

parameters are possible using a Newton-Raphson procedure. However, the

Newton procedure, in general, has problems of its own, if the initial

starting point is 'too far' from a minimum, the method will not convergem

(Ref 27:443). The problem of initial estimates is widely known, but in

our case, as I will explain, it is very evident.

In the article by Prentice (Ref 38) he applied the three parameter

model given by Eq(4.9) to some classical insect mortality data. The

model solutions for 1,d, and m were given and this gave me an excellent

chance to verify and validate my computerization of the model in Eq(4.9).

However, I soon discovered how sensitive to initial starting values this

method really is.

If I fixed any two of three parameters (9,0,m) to the results listed

by Prentice and then varied the third, I found that I could only change

this parameter by something less than 10%. Outside of this t*% range the

model 'blew-up'. By this I mean that the computer ( a Control Data Cor-

poration Cyber 750) would either go into machine underflow or overflow,

or when trying to invert the information matrix I found that the matrix
a.

was ill-conditioned. These were just a few of the problems. Remember

this was just for one parameter; the problem intensified directly with

the number of parameters varied. This presented a real problem since I

,J had no idea as to the values of P or 0 for any given m within our sample

data, let alone the value for m.

*-. .My initial reaction was to do a search for m, incrementing it a
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little at a time; this would only leave the problem of estimating Is and

3$- 6. But, as I soon discovered, different values of the shape parameter m

required different initial estimates for P and d. It did not take long

for me to give up on this approach.

-" The next approach was the most costly with respect to time. The

approach was to systematically patch the computer code for each problem

encountered. I inserted numerous error checks, put in bounds to prevent

computer over/underflow, I even modified the technique such that if the

search procedure started to diverge, it would automatically move back

half the distance (towards the last good solution). Unfortunately, all

of this simply slowed down the divergence, but the results were the

same.
ma.

In hindsight the solution was simple. Since the problem was one of

finding the zeros of the derivatives of the log-likelihood function, I

only needed a routine that solved nonlinear equations. The solutions

from this routine would then be given to the Newton procedure as initial

estimates. After examining many such techniques I found one in the IMSL

,.- package (ZXCGR) which worked well. It is a conjugate gradient algorithm

for finding the minimum of a function.

The conjugate gradient technique is much more forgiving for 'bad'

initial quesses, but it too has limits for these guesses. So one more

technique was added to the chain of solutions. Note, if y'=a+b In x =

(in x-P)/4 then /b-0 and II=-Oa, but y'=a'b In x is simply the linear

regression model for the logit procedure. Using the regression coef-

ficients from the logit procedure, to obtain initial estimates for 11,0,

afor the gradient technique gave the best results thus far.
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Results for the Three Parameter Model

The first step was to run a simple linear regression on the log-

linear equation for logit. Then, using the coefficients from the re-

gression, calculation of initial estimates for P.0 was performed and

given to the gradient algorithm along with an estimate of m-1. The

A A
results for P,O,m out of the gradient procedure were then given to the

Newton procedure. (See Appendix D for the computer listings for the

gradient and Newton procedures.) The results of the analysis follow.

*". In six cases (ART, INS, MFK, MMP, and SMRT) the initial estimates

*out of the gradient search algorithm let the Newton procedure converge.

A A A
However, the estimates for P,O,m out of the Newton procedure were vir-

tually unchanged from those input by the gradient procedure.

The equation for the three parameter model is given by Eq(4.9),
A AA

where y-(d-P)/O. The values of lO,m for the six equipment items which

converged are given below, and the chi-square values are given in Table

IV.

ART P"4.93897 O=.83589 m-.91631

DSMU P-6.31593 &.58915 mw.86487

INS P-A5.29186 ".81942 m-.$1643

MFK P-5.75742 ot,.68732 m-.018448

MttP P-6.83062 -.72084 m-.90344

SMRT P-'3.5372 O".98229 m-.95481
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Tab) e IV
'S.

Chi-Square Tail Probabilities for the
Converoent Three Parameter Model

MFK .8364
,% tfHP .7425

9RT .7239
ART .3871
DSMU .2786
INS .8656

For the other eleven cases the estimates out of the gradient pro-

cedure caused the Newton procedure to diverge. Even though the esti-
A A A

mates for P,dm were not 'good' initial estimates for the Newton proce-

dure they are listed below for completeness. The chi-square values are

given in Table V.

* Bus P-1..42526 dm.66959 m-2.53973

CDRT P--.612943 0.84179 m-3.85879

* DEK P"-1.77332 4-.94971 m-10S.76879

HUD P-1.38298 O-.86383 m-1.28253
.1

IMFK P--.85582 .98331 m-1.01454

PDOG IL-1.94282 d'.90172 m'2.17789

MPDS 11-2.25281 -1.82966 m- 1.64836

MTU P,,-1.26428 O"1.18823 m-4.74657

Processors F,,- 1.29783 0,1. 19891 m-5.73043

SCU P-1.83275 •..87388 m-1.84555

SLU P=-.91022 &-l.15546 m-2.54579
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Table V

Chi-Souare Tail Probabilities for the
Diveroent Three Parameter Model

Item Vale
CDRT .9483
IMFK .9343
Bus .9007
Processors .7466
SLU .2918
MPDG .2747
DEK .2279
MPDS .2173
HUD .664
SCU .8147
HTU .8861

For the items which did converge, using the Newton procedure, there

A-!

is a clear trend for the values of m to be close to 9 and for A to be

A
around 5. But, for those items which diverged, m is larger than 1 and IL

is very small. (Remember A is actually an estimate of the dose which in

our case is the Log MTBF).

Comparing Table IV with Tables I and II it can be seen that only

one item, the DSMU, had a better fit under the three parameter model

than either logit or probit provided. Two other items, the MFK and MMP,
',.

had better fits than with logit. All fits were worse than the probit

except the DSMU.

Looking at Table V shows that all of the items had worse fits than

that provided by the logit, and most had worse fits than the probit.

But, these items were the divergent ones and their fits are questionable

., anyway.
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Conclusions and Remarks

The technique offered by Prentice is interesting to say the least.

. -y. " It contains within its family both the logistic and normal distributions

which are so often used. Prentice offers a standard score test to exam-

ine the fit of the logistic and normal models which is more sensitive

than the usual chi-square test of fit. This test is based on the asymp-

totic distribution of t-(d/dm,d/dn) evaluated at (m,n).

However sensitive the above test may be the computations for it

depend on convergence of the Newton procedure so that the information

matrix may be obtained. Yo, must also reparameterize as m and n ap-

proach infinity for the normal model. But, I must admit, this is not

really a drawback if you have good estimates of I9 and d.

The application of the three parameter model did not give better

results than those obtained by the more familiar probit and logit meth-

ods, except for a few items noted previously. Even for these few items

the computational techniques were extremely more complex and time con-

suming. However, this does not imply that the technique must always be

- ', . so difficult.

P -. 1 feel that a future effort, dedicated to computerizing the entire

family, would be useful. There were many numerical techniques (Refs 23,

25,27) which I did not investigate, due to time considerations, which

may have been useful in overcoming the computational difficulties which

I encountered.

4.
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V Quantit Analysis

The Model

Copenhaver and Mielke (Ref 11) give another family of distribu-

tions, analogous to that of Prentice (Ref 38). This family is desig-

•.. "nated as the omega distribution. The cdf of this distribution is

U. F(x(q)) , q (5.1)

its pdf is

f(x(q)) - I - 12q - 11v +  (5.2)

and

x(q) I f(x(z))]- I dz (5.3)
51'2

j. here O(q(! and v)-i. As was the case for the family given by Pren-

tice, this family has embedded in it special cases. *In particular,

this distribution is a double exponential when v-9, a logistic distribu-

tion when v-I, and a uniform in the limiting case as v-m' (Ref 11:177).

That is, for v-i the pdf is f(x(q))-4q(]-q) , and

q.5 -1Ix(q) uf12I4z(l-z)] dz = (1/4)log(q/l-q)

or the logit of q. This yields the logistics density function:

f(x) - 4 exp(4x) El + exp(4x)]-2

For *-O the double exponential density function is f(x)=exp(-21xl),

and for v-m the density is f(x)-! for -1/2(x(1/2.
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Note that the symmetric distributions of Eq(4.2) (e.g when m=n)

-, given by Prentice are approximately the *...subset of omega distribu-

tions where 9(v(2' (Ref 11:178). But, as can been seen by Eq(5.2), the

omega distribution includes no asymmetric distributions.

The likelihood function for quantit analysis is the same as that in

Eq(4.3), but now

P.= . ft) dt = F(+Px.)

Thus, the tolerance distribution is given by

f(+x) = 1-I2P-11,
v +

and

r px. - h (P.) I 1/(1-12z-1 v + 1) dz (5.4)

where hv (Pi) is termed the "quantit" of P..
.4.

Commutations for the Model

"The computational procedures for obtaining ML estimates of param-

A A A
eters a,P and v (,av) consists of an efficient search routine for de-

A
termining v' (Ref 11:178). The calculations are identical to that for

Prentice (see Section IV), however; the procedure is more tracktable
."

since the numerical calculations are simpler, due to 'nice' functions.

A
The procedure starts at vO-l and continues until v is of the de-

A
sired accuracy or v exceeds 29. Elf v is 29 or larger, there is very

little difference between the omega distribution and limiting uniform

distribution...' (Ref 11:178). For the initial value of vO-1 use as

%4e
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initial estimates of a and P the least squares solution of the equation

h (P) - r+Px, where h v(P) is the observed quantit corresponding to the

proportion of observed responses s, at dose x, to the number of trials

at dose x.

The derivatives of the log-likelihood and the elements of the in-

formation matrix are calculated exactly as in equations 4.5 and 4.6 re-

spectively. However, for the omega model with P.-F(.Px.) the deriv-

atives with respect to the parameters c,JI are

dP/da a f((+Px)

and

dP/dP a xf(r+Px)

So, if you have the jth iterative estimates of a.and Jiand (i-1)st it-

erative estimate of R then the Newton-Raphson procedure yields the jth

estimate of P.. The (m+l)st iterative solution of Pij is given by

S(m+l) p (m) + (1- 12 P(M) 1 1V+I )Ca.+ P.x.- )
Sj ij j I v

and since we can write Eq(5.4) as

G(P. .) - a.+P.x.- h(P. 6

and

-6'(P..) = -(1 - 2P. .- I )

hence

S= p(m) (l(p (m)
p 14 1.. - 1 1

4 41
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Since the functions, and thus the above equations, are 'well-behaved'

the 2 by 2 information matrix never had the problems that I encountered

with Prentice's model.

" The only computational difficulty arises from the need to calculate

the quantit h v(P). Copenhaver and Hielke initially used the infinite

series given by

h (P) CO 12D+11
i (v l) +l

2 1 i(v+l) l

ise

where

I P 1/2

S = P-1/2

"-1 P<1/2

mWhenever vil and 12P-1108.9, the ... series converges rapidly. In

fact... the maximum error will be 10-0 when the first 38 terms are sum-

med" (Ref 11:186). However, when v<1 or 12p-11 is close to one (as in

our case) you sum for an 'appropriate' number of terms and then add a

remainder. The remainder is in the form of a continued fraction. "The

continued fraction converges slowly when either v is near -1 or 12p-l

is close to one* (Ref 28:222). Magnus et.al. (Ref 28) develop a closed

' form expression for the sum of an infinite series. Copenhaver and Miel-

ke adopted this latter technique in their computerization (Appendix E

contains the source code as written by Copenhaver and Mielke).

Results of the Guantit Analysis

The values obtained for a,P and v are given below for the 17
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equipment items, where r+Px.- h (P) as given by Eq(5.4), and.I V

f(ea+x) is the tolerance distribution.

ART v-19.SO a--.37446 n-.02797

Bus v=2 a--.33545 P--.93560

CDRT v--.96 a-9.05674 Pn-5.91737

DEK a--.98 c-8.40762 P--5.23146

DSMU v-2 a--.37875 An-.02647

HUD v-20 a--.3567 P--.02975

IMFK v=-.98 wx1.69570 ,,-5.66764

INS v-20 a--.37296 Pm-.02658

MFK v-20 am--.40607 P--.82475

fMMP v-29 a--.39221 Pm-.82368

C MPDG v=20 &,-.44213 P--.02624

4. MPDS v-20 a--.44539 A"-.02371

MTU v.-.90 apaS.45196 Pm-4.19618

Processors v.-.98 a-8.44919 Pm-4.48945

SCU v-29 a--.35513 i-.92874

SLU v--.98 a,6.6352 P-4.38218
4.

SMRT v9.50 Q--.38000 Pm-.05279

The value of v for all of the above, with one exception the SMRT,

is either -.9 or 29. These results are somewhat surprising, since for

Nthose items with v,-.9 the tails are very heavy. The clear implica-

tion is this; an item with a parameter value of -.9 for v has a very

narrow band of critical MTBFs. For MTBFs below this narrow band the
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item will always cause an abort and for MTBFs above it the item will

never cause an abort. Considering that the proportion of aborts is very

low in the sample data, and somewhat linear (flat), this is surprising

indeed.

Now looking at Table VI and comparing these chi-square values with

those in Tables I and II for probit and logit respectively, it is clear

that the quantit method gave consistently better fits than the probit.

With only two exceptions, the MPDG and the MTU, quantit also gave better

fits than did logit.

a,.,

Table VI

Chi-Spuare Tail Probabilities

for Quantit

item Value
IMFK .9915

0 CDRT .9846
Bus .9778
MFK .9162
SMRT .8788
Processors .8781
HIP .8271
SLU .5904
ART .5738
MPDG .4929
DEK .4499

Jo MPDS .3994
HUD .2111
DSMU .1895
INS .1680
SCU .0815
MTU .8255

Conclusions and Remarks

This method of quantal analysis appears to have been better than

all of the preceding methods. It gave consistently better fits than
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probit, one-hit, and the generalization of Prentice for all 17 equipment

items. It also had better fits for 15 of the 17 items than did logit.

I found that quantit analysis was quite easy to implement and un-

derstand. The computer code, given to me by Mr. Copenhaver, would be

'easy' to modify to attain any accuracy of the parameters needed. It

should be noted that the code contains a subroutine to perform probit

analysis (logit is a by-product of the program; v= is the logit and is

always output).

I would recommend that a future effort consider modifing the code

so that instead ot doing fixed iterations on v, it performs a simulta-
%"

neous search for all three parameters a,P and v. However, this would

then have the same sensitivity problems as Prentice's model. I would

further recommend that Prentice's model be incorporated with this code,

thus; giving a more comprehensive analysis tool.

a.

'. ... .
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VI Two Families of Transfor.ations

S Previously the logistic model has been a special case of all the

other models. As a matter of fact, the determination of how well these

other models performed has been a comparison of them against the logis-

tic, via chi-square tail probabilities. However, the logistic model is

only a tentative model and we need to look at how adequate it is. "If

we can find a procedure which detects inadequacy, and also indicates the

kind of desirable modification to the model, this is potentially useful*

(Ref 1:357).

Mr. Aranda-Ordaz (Ref 1) gives us two families of models which help

achieve the stated objective. These families each contain the logistic

Sand alternatives as special cases. These models each have an associated

transformation which model symmetric and asymmetric departures respec-

tively from the logistic. Symmetric transformations are such that they

lead to '...essentially the same answers if successes and failures are

interchanged* (Ref 1:357).
N.

The Symmetric Family and Associated Test

The symmetric family of alternatives to the logistic is given by

T (0) =( 2/)j/X-(l..o) ' (6.1)

where 0 is the probability of success and x is the transformation para-
%*

meter. If we let T (0)=A+B Ln x and then solve Eq(6.1) for 0 as a

,,4



function of '(we then obtain

S( X/2- 1)

0(') = (l+x/2 0'') lX'r/21 (1 (6.2)
.(14)1./X/ + 1-1 /X2)1/X

1.(x.%/2 1)

Note that Eq(6.1) '...reduces to the logistic transformation in the

limit when x=@ and to the linear transformation when X=1' (Ref 1:358).

Another feature of Eq(6.I) is

T (0) -T (1-0) ; T (0) =T_ (0)

or the treatment of successes and failures is symmetric.

As is the case for all quantal methods the underlying process is

binomial and the likelihood function is the same as that in Eq(4.4).

The systematic part o4 the model is given by 1-=4.

If we fit by maximum likelihood a linear expression
for I for a range of values of X, we may consider
the maximized log likelihood as a function of X. and
hence derive not only the maximum likelihood
estimate 9, but also determine which values of X
provide an acceptable fit. (Ref 1:358)

Since it was presumptuous to assume the logistic as the model it is

just as presumptuous to assume the symmetric will yield, via MLE, any-

thing but the logistic model back. Hence, before proceding with maximum

likelihood estimation of X, we need some test to determine if there are

indeed symmetric departures from the logistic model. The hypothesis we
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want to test is H: X8.

If we consider the parameter vector A as a nuisance parameter, and

replace it by its maximum likelihood estimate under X8, then the test

statistic is the efficient score Uo,)=dl/dx. U(%) vanishes at %8, but

after some reparameterizing, the score takes the following limiting

form:

U(S) =L(r.-n.. ;/12 (6.3)

A

where e.=1/(ltexp(-r.)) , -T is the logit equation, r is the number of1 1 1 1

responses, and n. is the number of trials.
1

Since Eq(6.3) is distributed asymptotically normal (Ref 14:363) the

test may be carried out with the standardized form of Eq(6.3). The re-

N' jection of H: x=S is for large values of the test statistic. The

CA 0variance of Eq(6.3) is given by

-1 (6.4)

where , and I. are the partition submatrices of I, Fisher's

information matrix (see Section IV, in particular Eq(4.6) for more, or

DeGroot (Ref 14) section 7.8 ). The individual components are

" I~o= i~rnid ii14

m

S = Snidi xx/ (r,s=l,... ,p)
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where di= 0i(1-S.), and p is the dimension of • In our case this di-

mension is 2 and the x1 vectors are the unit vectors. Note, *All values

required to perform the test may be computed from the output of a logis-

tic fit" (Refl:368).

The Asymmetric Family and Associated Test

The asymmetric family of alternatives is given by

W(O) = [(1-0)

* and

log W(0)=1 or exp(O)= W(O) (6.5)

where I% is linear as before. Again if we solve for 0 as a function of 1'

we obtain:

I 1- (+Xexp(fl) - (Xexp(-) >-D.

*QV) = (6.*6)

1 otherwise

Equation (6.5) also contains special cases, specifically for X-1 Eq(6.5)

reduces to the logistic and for X7=9 we get the complementary log log

model.

One must be careful when using this family since it does not treat

successes and failures in a similar fashion. 'There are situations

where it is desirable to treat successes and failures asymmetrically.

Yates (Ref 37) gives some examples* (Ref 1:358).

Just as for the symmetric model the underlying process is binomial

and is as described previously. The procedure is to maximize the like-
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lihood, again just as for the symmetric. We also develop a test statis-

, "--. tic analogous to that of the symmetric. The hypothesis is now, however,

H: X -. The test statistic is given by

U(1) (" ilog(l- ) (6.7)

where el= .xp( i)/CI+exp(V.)J.

The variance is given by Eq(6.4), but now the individual components

are

rn 2I30 ='Eni( (e.+logll-0))2/expl i)

0.. I = (Oi+-og(1-0.) ( -s=,l...,p)

0 s r -
s r *isri

again p is the dimension of P. This test also requires only values from

the logistic fit. The rejection of the hypothesis is for large negative

values of the standardized statistic.
,..

Computational Procedures

L. The calculations for both the test statistic U() and the two fami-

l lies are straightforward. The calculations for U(x) where explicitly

given in the previous paragraphs and no further explanation will be giv-

en here, except for one small discussion.

It is common practice to use weighted least squares procedures when

performing logit. While Mr. Arand-Ordaz does not explicitly state that

he uses weighted least squares I will assume that he did. The reason
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for weighting in a least squares procedure is that the assumption of ho-

K-" ", moscedasticity (constant variance) may not be justified (Cox (Ref 12)

section 2.2 and Theil (Ref 34) section 6.2). The assumption of homosce-

dasticity is one of the key assumptions underlying all regression analy-

sis, and must not be ignored. However, for all quantal analysis, since

the underlying process is binomial, weights are easily obtainable. Since

the variance of a binomial distribution is npq, it makes sense to use

this as the weighting coefficient, which is what I have done. This is

also what Dr. Barr (Ref 3) has done and what is suggested by Finney (Ref

15).

The model calculations, as I said before, are straightforward once

you have determined if there are symmetric or asymmetric departures from

the logistic. First for a fixed X calculate the value for Eq (6.1) or

Eq (6.5), for each level of the stimulus (MTBF). Next using these val-

ues perform a least squares regression to obtain P and P the regres-

sion coefficients. Then, using this regression equation, calculate (Y)

in Eq(6.2) or Eq(6.6). Finally, using the values of 0(V) just calculat-

ed, determine the value of the log likelihood function. Since you are

trying to maximize the likelihood function the value of ) that yields

the largest value of the likelihood is the MLE estimate ..

Note, one would normally only apply one of the two families if the

test statistics indicated a rejection of the null hypothesis that the

distribution Is logistic. However, for comparison purposes I calculat-

ed the MILE for all 17 equipment items for both families.

Results for the Symmetric Family

Given in Table VII are the results of the normalized test statistic
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computed from Eqs (6.3) and (6.4), and listed in ascending order. Also

' ",'" listed are the MLE values for X.

Table VII

Values for the Symmetric
Test Statistic and MLE

Item Statistic
' IMFK .5805 0.
, CDRT 2.0290 9.

DEK 2.6989 0.
SMRT 2.8950 9.13
Processors 2.9858 9.
MFK 4.1348 9.32
Bus 5.9072 9.
ART 5. 1847 0.18
SLU 6.8953 8.
INS 6. 1689 9.22
IP 7.2325 0.33
DSMU 10.3723 9.32
MPDS 13.4003 9.24
HUD 14.4408 0.62
MPDG 15.6428 9.33
SCU 29.6729 0.88
MTU 35.8981 9.

Comparing the order of Table VII and Table II (logit) it is inter-

esting to note that the order is somwhat the same, particularly for the

tops and bottoms of the tables. This is what one would expect since, as

the logistic fit becomes worse, the test statistic should indicate de-

partures from the logistic.

Remember the null hypothesis is H: x=O, or the distribution is not

different from the logistic. Therefore, the test indicates whether or

not there are symmetric departures from the logistic. The values of X,

in Table VII, are fairly consistent with the expected results as indi-

cated by the test statistic.

I am sure you have already noticed that the values of the test sta-
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tistic are larger than one would expect for a standard normal distribu-

tion. This could be due to the underlying distribution not being logis-

tic or even shaped liked a one, but something completely unrelated to

- the logistic. Indeed, the underlying distribution may not be represen-

ted by the family in Eq(6.1) at all. If this is the case the test for

departures is not valid. This may also explain the zero values for X

for those items with very large test values.

Listed below are the equations for 1', attained at the respective x

value, for all 17 items.

IMFK '= -.88418 - 1.08979 in x

CDRT -- .49617 - 1.16095 In x

DEK r-T .34701 - 1.01782 In x

SMRT 1= .06791 - .91811 In x

Processors 1= .50903 - .89628 In x

MFK 1-1.98938 - .44583 In x

Bus -T- .13686 - 1.00295 In x

ART -Y- -.39222 - .78307 In x

SLU 1'= .00023 - .84637 In x

INS 1'= -.57526 - .69058 In x

4.MtP 1'-2.02161 - .37681 In x

DSMU 1-1.48325 - .47681 in x

MPDS 1Y-3.33997 - .40853 In x

HUD 1'=-2. 18344 - .13002 In x

MPDG 1'=-2.02191 - .37681 In x

SCU -'-2.12457 - .01772 in x

* MTU 1' -.74551 - .66784 In x
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Listed in Table VIII are the chi-square values for the fit of the
,.-

17 equipment items using the symmetric family. The values are listed in

descending order. Comparing the values of Table VIII with those of Ta-

ble II the order is essentially the same. However, there is an increase

in the value of the tail probabilities in Table VIII for those items

which d3d not have an MLE x= (remember if X=8 these items are fit by

the logistic, hence, the same as Table II). There are three exceptions

however. These exceptions are the SMRT, ART, and INS, but their tail

values (Table VIII) are almost identical with those for logit in Table

' II.

*Table VIII

Chi-Scuare Tail Probabilities
for the Symmetric Family

Item Value
(3 IMFK .9754

CRT .9728
Bus .9641
MFK .9389
MPDG .9875
MMP .8261
SMRT .8247
Processors .8241
MPOS .6873
ART .4592

SLU .4527
DEK .3617
SCU .3107
HUD .2148
DSMU .1866
INS .0799
-TU .0487

Results for the Asymmetric Family

Table IX lists the results of the normalized test statistic com-
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puted from Eqs(6.7) and (6.4), and are in ascending order. Also listed

are the values of the MLE X.

Table IX

Values for the Asymmetric
Test Statistic and MLE

Item Statistic
DEK -1.2765 -138
CDRT - .7589 -148
Processors - .5834 -8
IMFK - .2972 -267
Bus - .0467 -781
SMRT .1812 20

* SLU .1970 -147
MFK .8151 227
MPDO .9758 -1789
HUD 1.1261 519
MTU 1.3683 -531
MMP 1.4385 325
ART 1.5993 61
INS 3. 1261 59
SCU 3.4655 3498
DSMU 3.7159 223
MPDS 4.9440 859

The theoretical null hypothesis in this case is H: X-1 ,or the

logistic. Therefore, for large values of the test statistic you will

reject the null hypothesis. However, Mr. Aranda-Ordaz indicates that

you will reject only for large negative values. This implies that the

working hypothesis is really H: .k1. The reason for this is clear;

* . since we are interested in asymmetric departures from the logistic we

"* are really interested in values of x significantly less than one. While

values larger than one are also acceptable the distribution starts to

lose its asymmetry and becomes more symmetric looking.

*If, as I said before, I were to go by the test statistic value, as

an indication whether or not to proceed with the asymmetric model, I

p55
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would not proceed. I would be hard pressed to reject the null hypoth-

"'" -esis H:xWI for any of the items, except possibly the DEK. But, since we

are interested in how well the over all asymmetric model and test

perform for our data I continued, and obtained the following equations

for -Y. Again these equations are attained at the MIE x given in Table

DEK "u-1.74791 - .72624 In x

CDRT a's -.99838 - .94895 In x

Processors T=o .22093 - .85761 In x

IMFK i,-2.48298 - .77771 In x

Bus T-2.24865 - .75122 In x

SMRT io .93780 - 1.09026 In x

SLU "-1.71897 - .62746 1n x

MFK l=s 3.81833 - 1.45962 In x

MPDG -"-5.44571 - .45658 In x

HUD 1'=12.85098 - 2.66024 In x

.4." HTU 1"-3.93067 - .34990 In x

-,MP I 3.97839 - 1.39584 In x

ART Iri 1.66151 - 1.16937 In x

INS 1- 2.82577 - 1.17670 In x

SCU -'=56. 15579 - 7.87826 in x

DSMU 1'- 5.40580 - 1.67762 In x

MPDS a'- .36738 - 1.17886 In x

Table X contains the chi-square tail probabilities for the fit of

-'.. 5
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the data using the asymmetric family. As with all previous chi-square

,..- tables these also are listed in descending order. Note, the order is

almost identical to that of Table VIII and also Table II. With four ex-

ceptions these tail probilities are better than those in Table VIII,

hence, better than those of Table II. The four exceptions are the MFK,

SMRT, SCU, and HUD.

Comparing the tail values for these four items with those in Table

VIII shows that while the symmetric was better it was not significantly

better. The only item of the four which was not relatively the same as

the logit fit, in Table II, is the SCU. For the SCU both the symmetric

and asymmetric models gave chi-square values more than four times larger

than that of logit, a marked improvement.

Table X

Chi-Sauare Tail Probabilities
"" for the Asymmetric Family

Item Value
CDRT .9934
IMFK .9934
BUS .9779
MFK .9208
MPDG .9298
,MHP .8427
Processors .8414
SMRT .8225
MPDS .7623
DEK .6693
ART .5668
SLU .4928
DSMU .3857
SCU .3868
HUD .1556
INS .1182
MTU .0828

One last interesting note concerns the test. If I had performed

57

* i 4



*.r ., , ., , . .. , ,, . , . . - .- . -- . *. . . .. -- -j -. . . - . . . -,, . ; . .d .. , . . . . j

the asymmetric test, with the intention of only applying the model if

indicated by the test, the only item I would have tried to fit would

have been the DEK. And, for this single item, I would have found an

V almost two-fold increase in the chi-square tail probability. But, I

would have missed improved fits for many other items.

N, Conclusions and Remarks

I feel the numerical calculations which I performed are correct and

accurate, for both the test statistic values and the models themselves.

However I would be less than honest if I did not report the following

-.' discrepancy.

Mr. Arand-Ordaz applied the asynnetric test to one set of sample

Vdata. This data has a point where the responses are the entire sample

(e.g. the number of insects killed equaled the number exposed to the

chemical stimulus) (Ref 1:362 table 4). How he treats this point was

not indicated. This point is a problem, as a matter of fact any point

V where all or none of the subjects respond causes problems. There are

many schools of thought about what to do with a point like this, but the

. standard seems to be to replace p=s/n by p(s.5)/(n+l) (Ref 11:178).

However, if one does not use this method than something very similar to

it is usually suggested.

With the above in mind I tried several different methods, but could
9-

never attain his fitted values as stated (Ref 1:362 table 4) for the lo-

gistic model. I could get very close using the SPSS regression proce-

dure to perform the logistic fit, but never close enough to satisfy my-

self. Normally I would chalk this up to not knowing how Mr. Arand-Ordaz

treats the problem point. However, to calculate the test statistic you

" " .58
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need the logistic fit. And, I could not duplicate this either, at least

without 'cheating' as I will explain.

Mr. Aranda-Ordaz (Ref 1:362) reports a test value of -2.76 for the

asymmetric statistic. Using the closest logistic fit I could attain

(compared to his) I could not get this value (remember this value is

obtained by the standardized form of UO, which has a mean of zero and

A: variance as given in equation 6.4. However, I could get his value if I

divided U(X) not by the standard deviation, but by the variance. Since

the equations (6.7 and 6.4) are easy to calculate and verify, and since

the SPSS regression technique is valid, I am convinced that the value

of -2.76 is wrong as reported by Mr. Arand-Ordaz.

These two sets of models were relatively easy to apply and they in-

corporate some of the same calculations required in Sections III and IV.

Hence, these models could easily be incorporated into a larger computer

package which included the families given by Prentice ( Ref:31) and Cop-

enhaver (Ref 11). The three families together include the logistic (lo-

git), normal (probit), and numerous symmetric and asymmetric alterna-

tives. A comprehensive quantal assay computer package has much poten-

*tial for use in many areas other than bio-assay

459°. -

4.

.'

L 59

Us,' -,- %-. %%.., % v ,._, • * ,. .* .* .. .. ; "-..-. • ,.".. '-'-,. . . '-.' .''.:,-:- -:A- .:..--',--.



p'.-.

Appendix A

Description of the

Avionics Evaluation Program

AEP Model

The Air-to-Ground Mission Analysis (MAP) submodel of The AEP evalu-

ates the performance of a flight of up to four aircraft on a mission

which may involve multiple targets, multiple search passes, and multiple

attack passes. The aircraft proceed along an externally generated nomi-

" . nal trajectory through the mission phases of takeoff, navigation to the

search area, search, attack, and return to base. Monte Carlo techniques

are applied to mean-time-between-failure (MTBF) data for the defined a-

vionics throughout the mission to determine which subsystem modes are

functioning, restoring to back-up modes, and mission aborts as required.

Target location uncertainties and navigation system performance parame-

.ters are combined to define the actual flight path relative to the true

target location. The sensor ground swath for the defined search pattern

is then compared to the true target location to determine if the target

passes through the sensor ground area coverage. Probabilities of de-

tection, target kill, and aircraft survival are sampled to determine

which mission phases are successfully completed. The model utilizes the

best mode still available for each function at the time it is to be per-

formed.

The MAP includes a detailed model of the ground turnaround process,

Preflight, thruflight, postflight maintenance, ordinance arming/loading,

-" *refueling, scheduling, and launch are modeled in terms of time require-

-. .. - -
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ments and event uncertainties.

Prior to launch of the first sortie of the day, the model sequenced

each aircraft through preflight maintenance and ordinance loading. Dur-

ing the maintenance interval equipment items are repaired and "time-to-

repair" is recorded. Prior to launch of subsequent sorties, the model

sequences each aircraft through ordinance de-arming, thru-flight mainte-

nance, refueling and ordinance loading. Repair and loading times are

recorded. Upon completion of the last sortie of the day, the model se-

quencies each aircraft through ordinance de-arming, post-flight mainte-

nance, and refueling for the next day.

The launch subfunction represents the interval between engine start

to takeoff. At this time, an additional equipment check is made to de-

termine additional failures. To determine these launches the sortie

* scheduling algorithms utilizes user supplied data to manage the starting

time for individual sorties on sequential days.

The preflight, thruflight, and postflight maintenance times are

based on mean duration time input data. Ordinance loading, arming and

de-arming times are determined in a similar manner. Refueling times are

based upon an input refueling rate (lbs/min) and aircraft fuel storage

capacity. The model calculates fuel utilization for each sortie to de-

termine additional fuel requirements.

In addition to ground preparation and ground maintenance, the user

must also define the in-flight mission functions along with their var-

ious parameters (e.g. nay accuracy, drift rates, oct.) and their associ-

ated suites of hardware and the hardware reliability and maintainability
':

parameters. The in-flight functi:,ns are navigation, navigation update,

communication, target acquisition, weapon delivery, general flight, tar-
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get, and survivability. Note that each of these functions have numerous

subfunctions (e.g. navigation has radio-aided nay, and self-contained

nay subfunctions).

Once airborne, an aircraft must have one of two navigation func-

tions working and the conmunications function working or the aircraft

will abort. The other functions which will cause an abort are the tar-

get acquisition, weapon delivery, and some of the general in-flight

functions. This latter function is one that can be used to determine

additional abort conditions.

o62
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Appendix B

Description of Mode Regression:

Abort Looic

For the single aircraft mission simulation the concept of mode re-

gression and the abort process is straight forward. For each mode with-

in each function, two things must be defined; operating or performance

characteristics, and a suite of hardware items (which also has a set of

parameters reliability and maintainability) needed to perform that oper-

ation (mode) within the function.

Consider one of the functions that will cause an abort if all modes

fail. This function has say 18 modes and within each mode a suite of

hardw~are items is defined. If one of the hardware items fails in mode 1

then the aircraft regresses (moves) to mode 2; you can think of this as

either a backup mode (e.g. redundant aircraft equipment items may have

been defined in this mode), or a degraded mode with degraded perform-

ance characteristics. Now if a crucial hardware itemn fails, that is one

that is needed by all modes, or if enough hardware items fail such that

you have regressed through all modes, then an abort will occur. Mode

regression starts at the best possible mode and regresses to the less

" desirable modes.
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Appendix C

Sample Data

The following is a list of the 17 equipment items considered for
analysis, and the raw data generated by the AEP.

ART - Avionics Remote Terminal

MTBF Launches Attempted Total Aborts
3909 5370 2
2998 5354 6
159 5378 3
1868 5437 1
758 5252 12
694 5340 9
596 5329 17
458 5482 13
358 54980 24
258 5316 44
166 5434 78

BUS - The aircraft data bus

MTBF Launches Attempted Total Aborts
i 20080 5443 a

3686 5389 a
1500 5309 3

. 1966 5386 3
909 5417 6
e86 5267 6

709 5277 6
666 5275 7

A. 50 5236 18

CDRT - Control and Displays Remote Terminal

MTOF Launches Attempted Total Aborts
4000 5413 1
300 5396 1
200 5374 2
150 5390 2

6e6 5299 1
756 5385 3
694 5443 5
566 5372 6
356 5365 11
275 5351 13

A' 225 5463 13
150 5298 23
166 5388 46
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DE( - Data Entry Keyboard

MTBF Launches Attempted Total Aborts
5060 5228 1
300 5252 2
208 5443 7
1e8 5397 6
750 5238 6
586 5295 18
258 5410 24
lee 5335 73

DSMU - Display Switch Memory Unit

MTBF Launches Attempted Total Aborts
5000 5359 2
3001 5486 1
2000 5394 3
1588 5306 3
1128 5443 8
908 5248 6
749 5271 12

450 5308 30
350 5369 34
1M6 5375 74

.4

HUD - Heads Up Display

ETBF Launches Attgmated Total Aborts
2008 5313 2
1618 5334 18
186 5326 18
758 5261 13
560 5295 21
380 5443 44

IMFK - Intearated Multi-Function Keyboard

T-* Launches Attemoted Total Aborts. 3090 5333 1

2866 5472 1
750 5260 2
566 5329 4
358 5301 6
16 5264 18

4. 75 5315 30
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INS - Inertial Navigation System

" TBF Launches Attempted Total Aborts
200 5349 8
1500 5446 5
108 5358 13
756 5519 8
560 5364 21
258 5427 47
166 5484 115
74 5443 118

MFK - Multi-Function Keyboard

MTBF Launches Attempted Total Aborts
300 5333 1
260 5472 1
758 5268 8
568 5329 7
350 5301 15
16e 5204 41
75 5315 54

MMP - Master Mode Panel

MTBF Launches Attempted Total Aborts
0 8960 5391 1

400 5286 2
30 5358 5
2000 5277 2
150 5372 8
1666 5328 14
750 5344 15
566 5288 22
256 5381 36

MPDG - Multi-Purpose Display Generator

MTOF Launches Attempted Total Aborts
5868 5369 0
306 5381 0
200 5361 a
1508 5429 6
1126 5443 2

900 5268 0
750 5298 2
560 5274 6
450 5341 3
350 5299 1
188 5311 8
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MPDS - Multi-Purpose Displays

MTBF Launches Attempted Total Aborts
500 5356 0
3088 5279 8
286 5412 1

.. 1509 5443 9
8es 5386 8
758 5305 1
500 5416 2
358 5264
250 5333 8
18 5329 14
75 5226 9

KTU - Multiplex Terminal Unit

MTBF Launches Attemipted Total Aborts
17681 5443 7
16889 5389 8
eeo 5273 3
4088 5383 7
288 5264 18
1580 5237 22
1898 5383 27

0 Processors - Aircraft data orocessors

-TGF Launches Attemted Total Aborts
506 5240 1
4560 5363 6
408 5272 6
3888 5443 18
200 5365 18
150 5379 11
1258 5433 16
16s 5389 18
968 5396 16
758 5283 18
50 5387 35
356 5387 47
18 5322 141

SCU - Sensor Control Unit

MTBF Launches Attempted Total Aborts
3973 5443 a
1500 5294 1
1868 5361 18

* 750 5298 11
. , 56 5389 25

.67
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SLU - Stores Looic Unit

MTBF Launches Attempted Total Aborts
3899 5426 9
2906 5535 7
199s 5324 12
853 5443 16
694 5395 26
347 5271 39

SMRT - Stores Manaoement Remote Terminal

MTBF Launches Attempted Total Aborts
5896 5514 1
3889 5401 1
2990 5541 3
150 5514 8
1e9 5383 8
694 5556 9
506 5498 12
347 5443 22
256 5494 34
16S 5461 79

S .Q

1
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APPENDIX D

Computer Programs for Section IV

The first program, ESTH5, calculates estimates for the parameters

mu, sigma, and m to be output for later use by program NEWTON. This pro-

gram uses a conjugate gradient search algorithm to determine the zeros

.- of the derivative vectors of the log likelihood equations given in Sec-

tion IV. The actual algorithm is the IMSL subroutine ZXCGR.

The input should be on TAPE 9 in the following form: dose, number

of subjects, and number of positive responses. The very first line im-

age on TAPE 9 should only contain the number of dose levels. The user is

then asked to input initial estimates for mu, sigma, and m by the inter-

active system. The output is written on TAPE 7 for direct use by the

program NEWTON, or preliminary inspection.

The second code listing is for the program NEWTON. This program

-uses a Newton-Raphson method for finding the zeros of the derivative

vectors of the log likelihood functions. The program expects the input

data to be on TAPE 7. The input data should be in the following order:

1.) First card - N, the number of dose levels

2.) Second through N+1st card - dose, number of subjects, number of
responses

3.) N+2nd card - initial estimates of mu, sigma, and m.

The final estimates of mu, sigma, and m along with the value of the

log likelihood function at maximum is written to TAPE 8. Also on TAPE 8

is the information matrix evaluated at the final estimates.
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1 PROGRAM ESTM5 * THE CONJUGATE GRADIENT SEARCH METHOD***
2= EXTERNAL FUNLH
3z REAL X(3),G(3),FLHtW(i8)
4= COMMON/DATA/A(29*3) ,INUMZ(20),DIFF(20)
5a READ(9,'(13)')INUM

C-.,.6= DO 222 IN=iINUM
7z READ(9t*).A(IN1),A(INt2),A(INt3)
8= Z(ID=ALOG(A(INti))
9. DIFF(IN)=AaNt2)-A(IN#3)
10=222 CONTINUE
Ila ACC=.0000001
12a DO III I-1,3
13a PRINT*,'?'

1= READ*,X(I)
* j5xilj CONTINUE

16Z CALL ZXCGR(FUNLH3,ACC,599t1 ,X ,GFLHUIER)
17= CALL FUNLH(IDUMXtFDUMtGDUMt-999.)
18= PRINT*tFLHX (I)tX(2)t (3)
19m PRINT*G(1)tG(2),G(3)
29= END
21= SUBROUTINE FUNLEOLI ,FtStFLAG)
22a REAL 1(3),S(3)tM2,FP(20),DMU(20)DSIGMA(20),DMI (20)
23w COMMON/DATA/A(2,t3)INUM,Z(20),DIFP(20)
24m M2=1.9
25z IF(FLAG.NE.-999.JTHEN
26=5 G1zGAMMA(X(3))

/2 27a 02=GAMXA(M2)
28z 03=GAMM4A(X (3)412)
29a BETA=01.02/G3

THIS DO LOOP CALCULATES THE CDF (P(J)) !OR EACH DATA POINT

AND THE DERIVATIVE NET EACH OF THE PARAMETERS, MUtSIGMA, M It

THE CDP FUNCTION 4

352 DO 10 JIINUM
36- Y=((J)-X(i))/X (2)
37a TEMP=EXP(Y)/(1+EXP(Y))
38m IF(X(3).LT. 0.0) THEN
392 P(J)U.9999999999
48m ELSE
41s P(J)xTEMP**X (3)
42a END IF
43a DM1 (J)uP(J)*ALOG(TEMP)
44m PDF=(EXP(Y .I())*(i+EXP(Y))*.(-X (3)-M2))/BETA
45= DMU(J)aPDFI(-X (2))
46z DSIGMA()Y.PDF/(-I (2))
47=10 CONTINUE
46s DO 20 Iz1,3
492 S(I)uo.e
50=20 CONTINUE
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THIS LOOP CALCULATES THE DERIVATIVE VECTOR S(I) OF THE LOG-

54x DO 4 KuIINUM
550 TEMPl1=DIPF(XC)-A(LC2)*F(KD)/(PMD(1-P()))
562 S(i)=S(1)+T~eiP*DNU(J
573, S(2)=S(2)-ITEI4Pi*DSIGMAa[)
SOX S(3)xS(3)'Tfl(Pi DMI (IC
59s4 CONTINUE
68 FILLx0.#p 61X DO 60 I=1,INUh
63=60 CONTINUE
64x F-FUlLL.
65a S(1)=-S(i)
66M 5(2)a-S(2)
67= S(3)=-S(3)

4,68= RETURN
692 ELSE
78m WRITE(7,'(13)')INUM
712 DO 100 IX31 NJU14
72= WRITE 7te)Z(JCI)A(KI,2)& (X3)

* 73=100 CONTINUE
742. WRITE(7t*)X(i)tX (2),X (3)
775- END IF
762 RETURN
77= END
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1= PROGRAM NEWTON
* 2z REAL A(2B,3),P(20),DMU(29),DSIGMA (20),DMI (29),S(3),X INFO(3, 3),

3= +X INV(3t3),WX(d)tI(3),M2,SS(3)
4: READ(7t'(I3)')NDATA
52 DO 100 IN=1,NDATA
6= READ (7,*)A UN,D, A (INt2) A UN,3
7=19 CONTINUE
8o RE&D(7t*)X (1)X(2)tX (3)
9m EPSLONX.099901
It= M42=1.9
1 1=5 GI=GAMMA(I(3))
12. G2=O&MMA(142)
13= G3cGAMm(x (3)4142)
14x BETA=G10G2/G3
15= DO19 J=,NDATA
16a Yx(A(Jt1)-X(l))/X(2)
17= TEM4PzEXP(Y)/(14EXP(7))
18m iF(Z(3) XLT. 9.9) THEN
19= P(J)=.9999999999
29m ELSE
21= P(J)=TEMP**X (3)
22= END IF
23= DM1 (J)=P(J)*ALOG(TEMP)

* 24- PDF=ICEXP(Y *X ())*(14EXP(Y))**(-X (3)-12))/BETA
25z DMU(J)=PDF/(-I (2))
26a DSIGMA(J)=Y.PDFI(-I (2))O 27= 19 CONTINUE
28a DO 29113 
29= S(Dush.
38= DO 30 Jx,3
31Z IINFO(It,Uo.o
32= 39 CONTINUE
33=20 CONTINUE
34z DO 40 Xmr1,NDATA
35a TEMPi=((A(Xt2)-A(It3))-A(I,2)P(D)/(P(D*(1-P(O)))
362 S(1)xS(1)+TEMPI*DMU(K
37- S(2)xS(2)TEMPi*DSIGMA(X)
38= S(3)=S(3)+TEMPI*DMi (I)
39= TEMP2A2)/P]D*(1-PaD))
46a 1 INPO(1 .1)=I INFO(1 .1)+TEMP2*(DMUUC)**2)
41z XINPO(1,2)=IINFO(,2)T14P*((DMU(K)*DSIG4A()))
42x X INFO(1 ,3)=X INFO(1 .3).TEMP2*((DMU(K)*DMI (K)))
43x IPO(2.2)=Z INFO(2,2).TEMP2*(DSIGMA(K)**2)
44a XINPO(2,3)=XINPO2,3)TEMP2*((DSIGMA(K).DMI(K))
45z XINPO(3,3)=IINFO(3,3)4TEMP2.(DMI (1)4*2)
46z46 CONTINUE

-'47- X IXPO(2 t)=X INFO (1 2)
48- XINPOW.1)aXINPO(1,3)
49a XINP03,2)=ZINPOQt3)

-J 59 TEST=SGRT(S()*2,S(2)*2.S(3)**2)
510 IF(TEST.GT.EFSLON) THEN

522 CALL LGINFaCINFO,3,3,3,B.9,1 INV,3,SS,WX,IER)
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54n T2x9.8
55= T34-.0
56z DO 58I=1#3
57m T1=T14XINV(I)*S(I)
58= T2=T2.XINV(2,I)*S(I)
59- T3zT34X INV(3,D)*S(I)
60=50 CONTINUE
61= 1(1)=X(i)+Tl
62z X(2)=X(2)+T2
63= XG()=10()+T3
64: GOTO 5
65= EL.SE
66= FUXLL-#.9
67- DO 60 I=iNDATA
68z ZZ=A(,2)-A(1,3)
69= FUNLLaFUNLL+ZZ*ALOG(P(I)/(1 -P(I)))+A (I,2)*ALOG(I -P(I))
70:60 CONTINUE
71= WRITE(8,*)ITH LOG-LIKE FUN AT MAXz ',FUNLL
72= WRITE(8t*)'EST OF MU: '.1(1)
73= WRITE(8#*) EST OF SIGMAS ',X (2)
74= WRITE(S,*Y'EST OF Mi: 'tX(3)
75- WRITE(8t'(" THE FOLLOWING IS THE INFORMATION MATRIVY)
76a DOS8S 1=1,3
77- WRITE(8,*)XINV(I 1),X INV(I,2),I INV(I ,3)
78=80 CONTINUE

S79- END IF
80= END
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APPENDIX E
- '.

Computer ProQrams for Section V

This program is for performing the calculations of the Quantit model

of Section V. This code is almost exactly as given to me by Mr. Copen-

haver (Ref 11), only a few changes have been made. The changes made

were those needed in order to implement it on the Cyber 750 computer at

WPAFB, and one small change (lines 776-781) to handle data larger than

anticipated by Mr. Copenhaver. Copies of the user's manual, also ob-

tained from Mr. Copenhaver, are obtainable from Dr. Barr in the Depart-

ment of Mathematics, AFIT.
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I= PROGRAM QUNTIT
2=C** QUANTIT ANALYSIS
3=C
4=C**THIS IS THE SECOND FORTRAN VERSION OF QUANTIT ANALYSIS, WRITTEN FOR
5=C THE IBM 370/159. THIS PROGRAM WAS CONVERTED FROM THE PL/I VERSION.
6=C
7=C*.*RESULTS FOR THE NORMAL MODEL (PROBIT ANALYSIS) ARE ALSO PRODUCED BY
8=C THIS ROUTINE. BOTH THE OMEGA MODEL (QUANTIT ANALYSIS) AND THE NORMAL
9=C MODEL HAVE BEEN SCALED SO THAT THE PROBABILITY DENSITY FUNCTION Fa)
l9=C ATTAINS A MAXIMUM VALUE OF I AT THE ORIGIN (F(9) = 1).
-i=C I.E.,
12=C THE OMEGA PDF IS: F(I) = I - W**(V+i) WHERE W IS THE ABSOLUTE VALUE
13=C OF (2*P-I).
14=C THE NORMAL PDF IS: F(X) = EXP(-Y*Y*PI) WHIRE PI=3.14159265
15=C
16=C**THE FOLLOWING STATEMENT DOUBLE PRECISIONS EVERY VARIABLE BEGIN NING
17=C WITH THE LETTERS A THRU H AND 0 THRU Z.
i8= IMPLICIT DOUBLE PRECISION(A-HO-D
i9= DIMENSION WHAT(7),XXX(50)
20= COMMON /BLANKI/ XX (50),XN(50),XS(50),XP(50),XPHAT(50),X SAVE P(58)
21= COMMON /BLAI2/ AHATBHATAINITBINITV
22= COMMON /BLANX3/ SAVEA(10t),SAVEB(it)
23= COMMON /BLAIK4/ ISETSITERA,ISWANAIVOPISTEPKDMNIXSW
24= COMMON /BLANKS/ SAVEV(50),V123(3),SAVELN(Se),XL123(3)
25= COMMON /COMi/ XKlDXI
26= COMMON /COM2/ PI=S2PIAItA2A4,XLIKE
27= COMMON /ALPHAT/ VFINTITLE(9)
28= COMMON /PANDV/ XPVAL(50),XVVAL7)
29= CHARACTER XCNTRL*5,XTITLE*5,XEDVAL*S,XDOSES*5,XVPARM*5,XFIN IS*5,
3= IXBLANICSFINALI*8,VFIN*5,TITLE*8,XLABEL*S
31= DATA XCNTRL,XTITLEXEDVALXDOSES,XVPARMXFINIS /I'CNTRL','TI TLE',
32= i'EDVAL','DOSES','VPARM',FINIS'/
33= DATA FINALi/ '(FINAL)'/
34= DATA XBLANK/' 'I/
35= PI = 3.14159265359
36= SQ2PI = DSQRT(2.*PD
37- ISETS =
38=C** READ CNTRL CARD
39= 1 READ(5,2,END=500) ILABELED,LOGTXLOGAMNIVOP,INOV,IPRTV
40= 2 FORMAT(A5,12,1i,F3.,I,I1,Ii,II)
41a ISETS = ISETS + I
42= NODOS = 0
43z IERR = S
44= WRITE(73) ISETS
45= 3 FORMAT(tHI,'DATA SET ',13)
46= IF (XLABEL.EQCNTRL) GO TO 4
47= WRITE(7,5)
48= 5 FORMAT(iHe,', ** ERROR, CNTRL CARD IS NOT PRESENT OR IS NO T THE F
49= IlRST CARD IN THIS DATA SET. PROGRAM IS TERMINATED')
50= GO TO 500
Si= 4 CONTINUE
52= IF(LOOT.NE.3) GO TO 6
53=C**CHECK FOR VALID LOG TRANSFORMATION
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54-- IF(XLOGA.GT.1.0) GO TO 6
*55= WRITE(7t7) XLOGA

* -. 56= 7 FORMAT(IH9,'** ERROR -- A= '#F8.3t' IS INVALID BASE FOR LOG TRA
57= INSFORMATION')
58= 6 CONTINUE
59= IXSN =l
60- ISWANA 0
61= IEDCRD 9
62z IVCARD a 0
63= VFIX = XBLANI
64=C**READ TITLE CARD
65= READ(5,8,EN=590) XLABEL,(TITLE(I)xI= 19)
66= 8 FORMAT(A5t9A8)
67= IF(XLADEL.EQ.XTITLE) GO TO 9
68= WRITEM710) XLABEL,(TITLE(I),I= 1,9)
69= 19FORMAT1H,* * * ERROR: TITLE CARD NOT ENCOUNTERED. THE FO LLO WING
78= ICARD WAS READ IN:'p/lXA5,9A8)
71= GO TO 500
72= 9 WRITE(7t11D (TITLE(I)tI=1,9)
73= 11 FORMAT(iH#,9A8)
74--C**RE.AD NEXT CARD
73= 50 READ(5,12) XLABEL,(WHAT(I),I= 1,7)
76= 12 FORMAT(A5t5Xt7F10.#)
77=C*4.CHECK IF EDVAL CARD
78= IF(XLABEL.NEJXEDVAL) GO TO 13
79= IEDCRD a I
80= IF( (MN.GE.1)AKD.(MN.LE.7)) GO TO 14
81= WRITE(7,15) MR

-' 2= 15 FORMAT(IH9,'* * *ERROR: DATA FROM EDVAL CARD CANNOT BE RETR IEVED.
83= 1 CXTRL CARD INDICATES THAT THERE ARE '#14,'VALUES')
84z IF(IERR.EQ.9) IERR = I
852 GO TO 1000
86= 14 DO16 IuitMN
87= 16 XPVALI) = NHAT(I)
88= DO 17 1- i,MN
89= IF(CXPVAL(I).GT.0.) .AND.(XPVAL(I).LT.1 .)) GO TO 17
98= WRITE(7,18) XPVAL(I)
91= 18 FORMAT(IHO,'* * *ERROR: THE ED VALUE OF Pz ',D 12.5,' IS OUT OF RAN
92= IGE. M4UST BE BETWEEN B AND V')
93- GO TO 10
94- 17 CONTINUE
95=C**CHECIC IF VPARM CARD
96- 13 IF(XLABEL.NE.XVPARM) GO TO 19
97z IVCARD a i
98= IF( (INC V.GE.1).AND-(INO V.LE.7) ) GO TO 20
99z WRITE(7,21) INOV
100= 21 PORXAT(lHO,'* * *ERROR: DATA FROM VPARM CARD CANNOT BE RETR IEVED.
101= ICOLUMN 13 OF CkITRL CARD INDICATES THERE ARE ',15,' VALUES)
192= IF(IERR.EO.0) IERR = i
103= GO TO 1900
1042, 20 DO 22 Iz1,INOV
105= XVVAL(I) = HAT(I)
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i06= IF( (XVVAL(I).GT.(-I.8)).AND.(XVVAL(I).E.20.))GO TO 23
107= WRITE(7,24) XVVAL(I)
198z 24 FORMAT(IHO,'*** ERROR: INVALID VALUE OF V= ',D12z,' WAS READ FR
109= IOM VPARM CARD. MUST BE GREATER THAN -1 AND LESS OR EQUAL TO 20.')
110= GO TO 1000

-- I I 1=C*.ONLY FIRST 3 DECIMAL PLACES OF V ARE USED.
112=C*u*THE FOLLOWING 3 STATEMENTS ARE IDENTICAL TO FLOOR(X) IN PL/I.
113=C THAT IS# THE LARGEST INTEGER .LE. TO X. THE FORTRAN FUNCTIO N
114=C IDINT(X) IS IDENTICAL TO FLOOR(X) FOR X.GT.e, BUT NOT FOR
"iS=C NEGATIVE VALUES OF X.
116= 23 CORTINUE
117= VDEL = XVVAL(I)
118= DELSGN = DSIGN(0.5D0,VDEL)
1 19= V = DBLE( IDINT(VDEL*tS00. + DELSON) /1000.

- • 120= IF (XVVAL(D.LT.-.999) XVVAL(I) = -. 999
121= 22 CONTINUE
122=CICHEC IF DATA (I.E. 'DOSES') CARD HAS BEEN READ.
123= 19 IF (ILABEL.NE.XDOSES) O0 TO 25
124= NODOS = NODOS + 1

", 125= IF (NODOS.LE.D) GO TO 26
126= WRITE(7,27) ID
127= 27 FORMAT(iHB,'* * *ERROR: THE NO. OF DATA CARDS EXCEEDS THE V ALUE OF
128= i ',13,' SPECIFIED IN COLUMNS 6-7 OF CNTRL CARD')
129= GO TO 1000

" 130= 26 XX(NODOS) = WHAT(i)
131= XS(NODOS) = WHAT(2)
132= XN(NODOS) = WHAT(3)
133= IF( aS4ODOS).LT.O.0).OR.aS(NODOS).GTJN(NODOS)).OR.(XN(N ODOS).L
134= iE.9.0)) GO TO 29
i35= GO TO 30
i36= 29 WRITE(7,31) XX(HODOS),XS(NODOS),IN(NODOS)
137= 31 FORMAT(iHO,'** *ERROR: ONE OR MORE INVALID DATA ITEMS: DOS E= ',Di
138= 12.5,' 6= ',D12.5,' N= ',D12Z)
139= IF (IERR.EQ.0) IERR=i
i48= GO TO 1000
141= 30 CONTINUE
142= 25 IF(XLABEL.NE.XFINIS) GO TO 50
143= IF( (MN.NE.@)KND.(IEDCRD.EQ.0))GO TO 32
144= GO TO 33
145= 32 WRITE(7434) MN

i46= 34 FORMATUH9,"* * ERROR: MN= ',15,' IN COL. 12 OF CNTRL CARD , BUT N
147= 10 EDVAL CARD IS PRESENT. DEFAULT EDVALUES WILL BE USED')
148= GO 0 35
149z 33 IF(MN.NE.0) GO TO 36
i5=C**ASSIGN DEFAULT EDVALUES IF EDVAL CARD NOT PRESENT
15i= 35 MN=7
152= XPVAL1) =.AI
i53= XPVAL(2) =.5
154= IPVAL(3) =.10
155= XPVAL(4) =.50
156= IPVAL(5) =.90
157= XPVAL(6) =,95
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1582 XPVALC7) z.99
159=C*ICHECK ON OPTION FOR V (COL. 13 ON CNTRL CARD)

K. 160=C**CHECK FIRST FOR SEARCH PROCEDURE
161= 36 IF(IVOP.EG.2) GO TO 37
162= IF(IVOP.EQ.O) GO TO 41
163=C*.CHECX IF VALUES OF V ARE READ IN (OPTION 2)
164x IF( (IVOP.EO.1).AND.(IVCARD.El2.0) ) GO TO 38
1652 0TO39
166a 38 WRITE(7,40) IVOP
167a 40 FORMAT(IHO,'* * *ERROR: IVOP a 15t' IN COL. 13 OF CNTRL C ARD, BU
168a IT NO WPARM CARD IS PRESENT. DEFAULT VALUES ARE ASSIGNED')

- ~ 169= 00OTO 41
170= 39 IF(IVOP.NE.0) 0O TO 37
171=C*.ASSION DEFAULT VALUES OF V.
172= 41 XVVAL(1)z -. 9
173= XVVAL(2)z -.5
174c XVVAL(3)= 0.
175z XVVAL(4)= 1.
176a IVVAL(5)= 5.
177- XVVAL(6) 10.
178= XVVAL(7)=- 20.
179m INOV - 7
180= 37 IF (NODOS.EQZ.D) GO TO 1000
181= WRITE(7t43) ICDNODOS
182a 43 FORMAT(1H0,'* * *ERROR: ',15,'DOSES ARE INDICATED ON CNTRL CARD(CO
183z IL. 6-7). ONLY ',15,' DOSE CARDS WERE PRESENT')
184- IF(IERRME.0) IERR = I
185= GO TO 190
186xC*'CHECX IF ERROR. IF 60,00 TO NEW DATA SET.
187= 1000 IF(IERRME.1) GO TO I
188= IF (LOGTME.4) WRITE(7,44)
189z 44 FORMAT(IHO,'DOSAGE TRANSFORMATION: NONE')
190= IF( (LOGTLT.2).OR.cLOGT.GT.4)) LOOT=1I
191= IF cLOGT.E.1) WRITEM745)
192= 45 FORMAT(IHO,'DOSAGE TRANSFORMATION: LOG(BASE 10)
193= IF (I.OGTME.2) WRITE(746)
194= 46 FORMAT(1H0,'DOSAGE TRANSFORMATION: NATURAL LN,DASE E')
195= IF(LOGT.EQ.3) WRITEM747) XLOGA
196z 47 FORMAT(IHO,'DOSAGE TRANSFORMATION: LOG (EASE 'F., '

197= WRITE(7,4)
198= 48 FORMAT(lH0,i7Xt'TRANSFORMED NO. OF NUMBER')
199m WRITE(7,49)
204x 49 FORMAT(IH ,71 ,'DOSAGE',7X ,'DOSE',81 ,'SUBJECTS',4X ,'RESPONDI NG',4X,
201= 1 'PROPORTION')
202a 1=0
203- 162 1-1+1
204- ISA VEP(I a XS(I)IXN(I)
205= 111(1 a XX(I)
206a XP(I = XSA VEP(I
207- iF(a~S(D).G.).OR.(XS(I).IXN(I))) )CPWI (IS(I)+ 0.5)I
208a 1O(N(l) +e 1.0)
299m IF(LOGT.EQ.4) GO TO 800 1
21t= 8000 IF (LOOT.EQ.1) 11(1) a DLOGIO(XX(I)
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211a IF(LOGT.E.2) XXWI DLO(XW()
212= IF(LOGT.NE.3) ILOGA z 10.

-; 213a IFU..OGT.NE.3) 00 TO 8001
214z XTRANS a DLOGIO(ILOGA)
215x 11(l) a DLOGI0oaxWl)/XTRANS
216a 8001 CONTINUE
217. WRITE(763) XXX (I),XX (I),XN(I),X S(I),XSAVEP(I)
218= 63 FORMAT(iH0,3X ,2(D 12.5,2X),F6.0,7X ,F6.0,91 ,F9.6)
219a IF(I.LT.KD) GO TO 162
220= WRITE(7,5l) ID
221z 51 FORMAT(1H//,' NO. OF DOSAGE LEVELS ='14)
222= WRITE(7,52)
223a 52 FORMAT(1H0,THE OPTION FOR V a')
224= IF(IVDP.NE.2) GO TO 3
225= WRITE(7 54)
226z 54 FORMAT(IH+,201,'SEARCH PROCEDURE')
227= IF(IPRTV.EQ.1) GO TO 55
228z WRITE(7.56)
229z 56 FORMAT(1H4,37Xt'(PRINT COMPLETE RESULTS FOR V0,1,t AND FINA L W))
230= GO TO 60
231= 55 WRITE(757)
232= 57 FORMAT(IH+t37X ,(PRINT COMPLETE RESULTS FOR ALL VALUESY))
233m GO TO 60
234- 53 CONTINUE
235= IF(IVOP.QV GO TO 58
236z WRITE(7,59) 4XVVAL(I),IxiINOV)
237= 59 FORMAT(IH+,0X, DEFAULT VALUES: V= It7(F10.3))
238= GO TO 60

* 239c 58 WRITE(7,61) (IVVAL(IitINOV)
249a 61 FORMAT(1H+#2#X,' INPUTTED VALUES: Vz It 7(F19.3))
241z 60 CALL MLEAB
242a CALL PRINT
243z ISWANA = i
244= IF(IVOP.EG2) GO TO 65
245zC**PRODUCE RESULTS FOR FIXED VALUES OF V (IVOP a I OR 2)
246z DO 66 I=lINOV

-p.247= V= XVVAL(I)
248a CALL VRAT
249= CALL MLEAB
250z CALL PRINT
251= 66 CONTINUE
252= WRITEM73060) ISETS
253 3400 FORMATUiO4* * E ND O F D AT A S E T',13tI*)
254=C*IGO TO MN SET OF DATA
255= GOTO I
256=C*SEARCH PROCEDURE: FIND V IN (- (V <z 20) TlIAT MAXIMIZES THE LIXCELI
257= 65 ISTEP= 0
258a IVDONE a 3
259= DO 67 1=1,3
260= ISTEP zISTE +1I
261- TEMPV = DDLE(IW 1.
262= V 2 TEMPV
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263- V123(I) =TEMPV
264= SAVEV(I) = TEMPV

*.~. 265= CALL VRAT
266= CALL MLEAD
267- XL123(D) - XLIXE
268= SAVELN(I) MLICE
269a IF ( (I.LT.3).OR.(IPRTVME.1)) CALL PRINT
270= IF ( I.3).AND.(IPRTV.EQ.0))GO TO 68 271z GO TO 67
272= 68 WRITE(7,79)
273a 70 FOR)(AT(iH1,581 ,'SEARCH PROCEDURE',// 11,121 'STEP'.121 ,'V'tI 2X ,'LN
274- ILI)
275= 'WRITE(7,77) ISTEPtVtXLIKCE
276= 67 CONTINUE
27 iF(a~L123(2).GT.XLi23(i)).AND.(XL123(2).GTJXL123(3)) ) GO TO 72
278= GO TO 73
279= 72 DEL a -0.4
280= DO074 1 a12
281z DEL zDELl2.
282= D075 Jzit2
283a ISTEP - ISTEP + 1

/1284= IVDONE z IVDONE + I
285z VDEL a V123(2) + DEL
286= DELSGN a DSIGK(8.5D9#VDEL)
297= V a DDLE( IDIXT(VDEL*10. +DELSGN) )/i00.
288a V123(2*J-i) a V
289- SAVEV(IVDONE) a V
290= CALL VEATQ.291= CALL MLEAB
292= 1L123(2*J-i) a XLIXE
293= SAVELN(IVDOND) = XLIXE
294= IF(IPRTV.EG.i) GO TO 175
295= WRITE(7,77) ISTEPtVtXLIKcE
296- 77 FOR)XAT(1H0,I 11,14,161 F7.3,41 D15.7)
297=-C*.FORMAT 77 IS F1 IN PL/I
298- 0O TO 176
299= 175 CALL PRINT
360= 176 CONTINUE
3018 DEL z -DEL
362= 75 CONTINUE
383=CGO0 TO HILOW
304- IF ( a1L123(3).GT.XL123(2)).OR.(XLi23(t).GT.XL123(2)) 00G TO 78
305= 74 CONTINUE
3068 Va 1.
307zC*.GO TO VI
308x 0O TO 80
309a 73 CONTINUE
310=C**THIS IS HILOW
311= 78 IF (XL123(3).LE.XLI23(2)) 00 TO 81
312= IF(IVDONEINE3) GO TO 82
313s DEL =2.
314= GO TO 83
315a 82 DEL = -DEL
316= 83 =L23Wi a L123(3)
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317= V123(1M V12303
..-. 318= GO TO 84

* . - 319m 81 IF (IVDONEME.3) DEL c -.2
32$=C**DELV
321m 84 CONTINUE
322= VDEL = V123(1) + DEL
323z DELSON a DSIGN(*.5D0,VDEL)DESN)10.

325a V123(2)=- V
326z ISTEP = ISTEP + 1
327z DO 85 I a i#IVDONE
328z IF(V.NE.SAVEV(D) GO TO 85
329z IF(IPRTV.Q) GO TO 86
339= WRITE(7,87) ISTEPtSAVEV(I)
331= 87 FORMAT(IH#//,1I,'STEP',I3,': Vz 'PF5.2o' (PREVIOUSLY CALCU LATEE))'
332x 1)
333=C**FORMAT 87 IS F2 IN FL/I
334x GO TO 88
335x 86 WRITE(7,77) ISTEPSAVEV(I),SAVELN(I)
336= 88 XL123(2) = SAVELN(I)
337=C**GO TO CHIL
338x GO TO 89

.p. 339s 85 CONTINUE
340= IVDONE z IVDONE. +1
341. SAVEV(IVDONE) x V
342= CALL VEATO343x CALL MLEAB
344= IF(1PRTV.I) GO TO 91
345n WRITEM777) ISTEPVtXLICE
346= GO TO 92
347-v 91 CALL PRINT

*348.e 92 XL123(2) a XLII!
349m SAVELN(IVDONE) m ILII!
35@.CM*CHKL
351= 89 IFCXL123(2).GT.XL123(i) GO TO 93
352m DEL x -DELI2.
353x XABS z DABS(DEL)
354w iF( aABS.GE.e.5).AND.(V.GTZ.#) ) GO TO 94
355s iFaABS.GE.,25.AND.(V.GT.2.,.AND.(!.LE.5.8)) GO TO 94
356= IF( CXABS.GE.9.1).AND.(V.LE.2.B) 00G TO 94

*357z GO TO 95
358m 94 XL123(i) a XL12302
3592 V123(1 2 V123(2)
360.C*IGO TO DELV
361s GO TO 84
362x 95 CONTINUE
363=e GO TO 96
364a 13 CONTINUE
365wC*4IF V=-.8 AND DEL-.2, SET DEL =-.1
366s IF( DABS(V+.SDG).GT.1.#D-04) GO TO 8002
367s IF( DABS(DEL..2D9).LE.i.9D-#4) DEL = -0.IDO

3682 802 CONTINUE
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369=C'4.CHECC IF Va-.? OR VW29.
370z IF( DABS(V+e.9De).LE.1.@D-08) GO TO 108
371= IF(V.GE.29.De) GO TO 100
372= XL123(l)=XLi23(2)
373z V123(1) = V
374=C**GO TO DELV
375a GO TO 84
376z 96 Va V123(1)
377=C*.Vi
378w 80 CALL VEAT
379- CALL MLEAB
380a 100 WPIN a FINALI
38iaC*.FINALV

4.382a CALL PRINT
383z WRITE(7,3000) ISETS
384= WRITE(7,101)

4 385=- 101 FORXAT(IHI
386=C*'GO TO NEW DATA SET
387= GO TO I
388= 500 WRITEC7#501)

*389= 501 FORMAT(IHO,//2X,***E ND 0 F P R00R A M **)
390= STOP
391z END
392= SUBROUTINE PRINT
393= IMPLICIT DOUBLE PRECISION(A-HtO-Z)
394= DIMENSION PDIP(50)tEDP(50)VAREDP(50)tSEEDP(50)
395= COMMON /PANDV/ XPVAL(50),XVVAL(7)C ~ 396= COMMON IBLANKII XX(50),XN(50),XS(5),XP(59),IPHAT(50),ISAVE P(59)
397= COMMON /BLANK2/ AHATtBI{ATAINITtBINITtV
398= COMMON /DLANK3/ SAVEA(101),SAVEB(l01)
399z COMMON /BLANIC4/ ISETStITERAISWNA,IVOPISTEPZD,IX1SW
40- COMMON /BLANKCS/ SAVEV(58)tV123(3)tSAVELN(50)tX L123(3)
401a COMMON IALPNATI VFINtTITLE(9)
402= COMMON /COM2/ PI.5022PIAAA4,ILIKE
403a CHARACTER XBLANK*8tVFIN*5,TITLE*8
404z DATA XBLANK I I/
405- ITENSM -8
406m CHIS2 =, 0.
407a IF(ISWNA.EQM.0) GO TO 1
408- WRITE(7t2)
409= 2 FORXAT(H1501'** QUANTIT ANALYSIS 4 '
410. IF( (IVOP.EQ.2).AND.(VFIN.EQ.XBLAND)GO TO 3
411in WRITE(7,4)
412m 4 FORltAT(IHO)
413v GO TO 5
414= 3 WRITE(7.6) ISTEP
415v 6 FORXAT(iHO1

1'SEARCH PROCEDURE: STEP',13)
416z 5 W4RITE(7 .7) VtVFIN
417a 7 FORMAT(1H ,6lXV z ',F7.3,AS)
418a 00OTO 8
419a 1 WRITE(7,9)
420a 9 FORMAT(iHit/51X#'* **PROBIT ANALYSIS V**)
421= 8 CONTINUE

82



7J&- ---7 F. Y. - ~ J - * ~

422m WRITE(7,10) ISETS,(TITLEIl1,9)
423= 10 FORMAT(IHB,'DATA SET ',13,': 't9A8)
424a WR1TEG it 1) AITLBINIT
425= 11 FORMAT(IHO/,IXt'INITIAL ALPHA = ',Dl5.7,7X,'INITIAL BETA = ',Di5.
426z 17)

*427- WRITE(7,12)
428a 12 FORMAT(IHVITERATION't121 ,ALPHA 1,141 ,'BETA')
429=, DO 13 Iz1.ITERA.
439m WRITE(7,14) ItSAVEA(I),SAVEB(l)
431m 14 FORMAT(1H t2XtI3,1 1XD15.7,3XD15.7)
432a 13 CONTINUE
433x A.A2 z -A2
434s WRITE(7t15) A4tAA2oAA2,Ai
435a 15 FORMAT(IHO/UiXTHE VARIANCE-COVARIANCE MATRIX FOR ALPHA AN D BETA:
436= i't/t2(/2(6XtDl5.7)))
437=C**N-LINE
438= I6 ITEMS zITEMS +9
439- NUM x MINO(ICDITENS'8)
440= WRITE(7,17) (IPHAT(I),IzITENSNUM)
441z 17 FORMAT(lHOII1Xt'MLE FOR P: ',9(31,FIO.7))
442= WRITE(7,18)4ISAVEPU),I=ITENSNUMO
443= 18 FORMAT(IH t'ODSERVED P: 't9(3XtFIO.7) )
444z DO 19 1=1,KD
445a 19 PDIF(1) a XPHAT(U) - XSA VEP(I)
446= WRITE(7t2#) (PDIF(I)IITENStNU4)
447a 20 FORMAT(IH #'DIFFERENCE: ',9(3XtFIG.7))

~ 448- IFQNUM.LT.KD) GO TO 16
449- BHATSQ a DHAT*BHAT
458= XFIEST z A4 / BHATSQ
451a LS A*20/BAS
452- ISEC = Al / DHATSQ
453- IF (ISWAXA.E0.0) GO TO 21
454--C*O1UARTIT ED VALUES
455z DO 22 In I MN
456= CALL QUANTI (IPVAL(I),EDP))

* 457a 22 EDPU) - (EDP(I - AHAT) / EHAT
458= GO TO 23
459C4"PROBIT RESUTLS;
468c 21 CALL INVNOR(XPVALEDPMN)
461= DO024 In1IMN

w 462= 24 EDP(I - (EDPWD/ SQ2PI - AHAT) / BRAT
463z 23 DO 251 1aiMM
464- VAREDPU) a IFIEST + ISEC'EDP(I)*EDP(I) + EDP(I)*IAST
465m 25 SEEDPG) - DSQRT ( VAREDPI))
466- WRITEM726)
467s 26 FORMAT(IHO,16X t'P'9X ,'ED ESTINATE',101 t'VARIAMCE',l9X t'STD .ERROR

468= 1')
469- DO 27 Is I M
470z 27 W4RITE(7,28) XPVAL(I),EDPWl,VAREDF(I),SEEDP(l)
471z 28 FORMA T(1H0,F1.7 31D i5.7,2(4X,D 15.7))
472a DO 29 IltKD

*473m PDIF(I) =PDIP(I)*PDIF(1)
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474= XYZ = XPHAT(I)* UI. - JCPHAT(1)
475= 29 CHISQ = CHISQ + XN(I) * PDIF(I) / XYZ
476z WRITE(7t39) XLIXE,CHISQ2
477-z 3O FORMAT(IH,/,5Xt'LN L = ',DiS.7t 51,'CHI SQUARE ='tDl5.7)
478a RETURN
479a END
489a SUBROUTINE QUAKCDaPHAT,XX.F)

r 481=C**THIS ROUTINE CALCULATES THE CDP FOR THE OMEGA DISTRIBUTION. I. E.,
482=C GIVEN X, FIND P.
483. IMPLICIT DOUBLE PRECISION (A-HtO-Z)
4842 COMMON /BL&NK2/ AHATBHATAINITBINITtV
485z COMMON /BLANX4/ ISETSITERA,ISWANAIVOPISTEPEDtMN,IXSW
486a DIMENSION IPHAT(50),X(08),F(50)
487: DO I IniKD
488O 2 aAHAT +BHAT XX(I)
489= 11:z0
490a (2=z1.
491= DO 2 J z 1,191
492- PC =XPHAT(I)
493=C**ANOT
494z 3 IF (PC.LT.O.5) PC a 1.0 - PC
495c CALL QUANTI(PCtHP)
496a G=HP -DABSZ
497w (21 z 1. - (DABS(2.* PC - 1.)) **(V+1.)
498x XPHAT(I) -= PC - 0*Q1
499z IF CXPHAT(I.T.1.0) GO TO 4
59zC**FIND MN INITIAL ESTIMATE OF P. IF INITIAL IS GREATER THE FINA L
501=C ESTIMATE (FOR P GREATER THAN .5) ,THERt CONVERGENCE IS GUARA NTEED.
502a 11=a1X1+1I
503a IF MKLGT.1) GO TO 5
504= PC x .9999DO
5#5zC**GO TO ANOT AND TRY AGAIN
586a G0OTO 3
587= 5 IF (KL.GT.2) GO TO 6

-,5082 PC it .999?99999DO
599= GO TO 3
5 Oi=C**NOTE THAT CONVERGENCE CRITERIA FOR P IS 0.0091. HENCE IF T HE
5112C PROGRAM REACHES THIS POINT, SET P =z.99999999
512z 6 XPHAT(1) z .99999999DB
513=C**GO TO FIN
514a 00OTO 19
515w 4 G2 uDABS( XPHAT(I) -PC)
5162 IF(122.LT.9.00091) GO TO 10
517x IF (J.LE.100) GO TO 2
518= WRITE(7,3i) I
519a I1 FORMAT(iH0NOTE: MORE THAN 1 9 ITERATIONS ARE REQUIRED FOR P('#
520 =-1134) IN SUBROUTINE QUANCD,)
521a G0OTOi1B
5:22= 2 CONTINUE
523*C**FIN
524a 10IF T IF(.LT..) XPHAT(I) = 1. - XPHAT(I)
525a 1 F(I) - 1. - (DABS(2.*XPHAT(I) - W.) ),*(V+1J

. 87= 526z RETURN
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527= END
523: SUBROUTINE NORMCD (XPRAT,ZXED,F)

..- 529=C*THIS ROUTINE CALCULATES THE CDP FOR THE NORMAL DISTRIBUTION. I .E.,
539=C GIVEN I, FIND P.
531= IMPLICIT DOUBLE PRECISION (A-H,O-Z)
532c COMMON /BLANIC2/ AHATBHATAINIT,BINITV
533= COMMON /COM2/ PI,SO2PIAIA2,A4,XLIKE

"" .. 534= DIMENSION XPHAT(S0),50),F(50)
535m DIMENSION B(5)
536z B0 = 0,2316419

.. 537m B(1) = 0.31938153
538. B(2) a-8.356563782
539. B(3) = 1.781477937
548a B(4) a-1.821255978
541: B(5) = 1.330274429
542= DO i IxI,KD
543z CDF = 0.
544- Z a (AHAT + BHAT *XX(I))* SG2PI
545= T = 1.0/ (1.0 + B9*DABS(Zf)
546= DO 2 J z 1.5
547= 2 CDP = CDF + B(J)*T**DBLE(J)
548a CDP =(CDP / SQ2PI) * DEXP(-Z*Z/2J
549= XPH&T(I) = 1. - CDP
550- IFC.LT.0.0) IPHAT(I) a CDP
551 Z a AHAT + BHAT*XX (I)
552a 1 F(I) a DEXP(-Z*Z*PI)
553z RETURN
554a END
555= SUBROUTINE INVNOR (PYN)
556=C+.THIS SUBROUTINE CALCULATES THE NORMAL DEVIATE (I.E.,MODIFIED P ROBIT)
557=C OF P. GIVEN Pt FIND Y.

. 558. IMPLICIT DOUBLE PRECISION (A-HO-Z)
559= DIMENSION P(58),Y(50),CC(2),DD(3)
560a CC(2) = 0.802853
561= CC(2) a 0.00328

. 562= DD() a 1.432788
563= DD(2) = 0.189269
564= DD(3) x 0.001308
565= DO I I IN
566m INUM x 2.515517
567. IDEN m 1.0
568. PP = P(I)
569- IF(P(I).GT.S.5) PP m 1. - P(I)
570= T= DLOG(.*/(PP*PP))
571= To DSQRT(T)
572w DO2Jzit2
573= 2 INUM = XNUM + CC(J)*T**DBLE(J)
574a DO 3 J 10
575= 3 IDEN = IDEN + DD(J) * T*iDBLE(J)
576m ZP z T - XNUM/IDEN
577= Y(l) a -ZP
578m IF (P(I).GT..5) Y(I) = ZP
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579- 1 CONTINUE
580= RETURN
581= END
582= SUBROUTINE VRAT
583=C**THIS ROUTINE EXPRESSES V+i AS A RATIONAL NUMBER. THIS IS NECES SARY
584=C FOR CALCULATION OF THE QUANTIT (IN SUBROUTINE QUANTI)
585= IMPLICIT DOUBLE PRECISION (A-HO-Z)
586= COMMON /COMI/ XKXDXI
587= COMMON /BLANK2/ AHATBKATAINITBINITV
588= DIMENSION A(2,2)
589=C*FIND RATIONAL NUMBER F=V+i = IL'XD
59= Pa V+l
591= Wi 2 DBLE(IDINTC))

-". 92= z= F - i
593= 1- DBLE( IDINTa*i0e. + .5))
594= Y= 190.
595= A(i,1) = Wi
596= A(i,2)= 1.
597= A(2ti)= 1.
598= A(2,2)= 0.
599=C..IF X=0 , O TO CALC
60= IF(I.EQ.0.) O0 TO 2
601= B = DBLE( IDINT (Y/X))
692= CALL MULT(AB)
603= XNUM=Y
604= DENOM = X
605= DO I I = 1,20
606Z WORKi = NUM
607a IUM = DENOM
608= DENOM = DMOD(WORKiDENOW
609= IF (DENOM.EG.$.) O0 TO 2
610= B= DBLE(IDINT(XNUM/DENOM))
61 = I CALL MULT(AB)
6i2=C**CALC
613= 2 XK=A(ii)
614= XD = A(2,)
615= I1=-i
616= TWO = 2.
617= IF(DMOD(XTWO).EG.0.) I = I
6i8= RETURN
619= END
629z SUBROUTINE MULT(AB)
621= IMPLICIT DOUBLE PRECISION (A-HO-Z)
622= DIMENSION A(2,2),C(2,2)
623= C(ti) = A(il)*B + A(1,2)
624x C(1,2) = A(,l)
625m C(2,i) = A(2,i)*B + A(2,2)
626= C(2,2) = A(2,i)
627x DO 1 I=1,2
628= DO I J=i,2
629= 1 A(IJ) = C(IJ)
630= RETURN
631= END



633= **T IS OUTI E C LCU ATESTHE GUA TITOF P. I.E.,GIVE X PFIND H( P).

636= COMMON ICOM2I PISQ2PIA I A2tA4pXLIKE
637z COMMON /BLANK2/ AHATBHATtAINIT,BINITV

d*..,.638z F=V+1.
639= IF (P.NE.8.5) GO TO I
640= HP a .
641z RETURN
642= 1 PP = DABS( 2.*P -1.)

A 643= PPI= DEXP( DLOG(PP)/XD)
644=s PP2= DEXP( 2.*DLOG(PP)/XD)
645= SUMI = 0.
646= SUM2 a 0.
647= SUMa = 0.
648a IMAX = IDINT( aK-i.)/2.)
649= IF (IMAX.LT.1) GO TO 20
650= DO 20 I1,IMAX
651= TEMPI = DBLEWI
652z WOR~i a DCOS(2.*PI*TEMPI*XD/XC)
653= WORIC2 = DCOS(2.*PI*TEMPI/XJC)
654= WORX3 - DSIN(2.*PI*TEMPI*XD/X K)
655= WORI4 = DSIX(2.*PI*TEMPI/XC)
656. SUMI x SUMI - aD/X I) * WORldI * DLOG(l.- 2.*PPI*WO0RI2 +PP2)
657= WORKS = PPI*WORK4/d1. - PPI*WORK-2)

658= 20 SUM2 = SUM2 + 2.*(XD/XIO*WORX3 *DATAN(WORK5)
659z 200 CONTINUE

*660z IMAX z IDINT( aD-i.)/1zn
661= IF (IMAX.LT.1) 0O TO 201
662r D 03 1= aIMAX

663= TEMPI z -DDLE(I)
664a WORV a TEMPI * F+ 1.
665= 30 SUM3 z SUM3 - DEXP( WORKI *DLOG(PP) -DLOG(WORKi)

666z 201 HP a SUMI + SUM2 + SUM3 - (XD/X1D*DLOG(i.-PPI)
667= 1 +. XD*(i.+XI)*DLOG(i. + PPi)/(2.*XII
668= HP c HP/2.D9
669= IF (P.LT.0.5) HP = -HP
679= RETURN
671a END
672= SUBROUTINE MLEAB
673=C**THIS ROUTINE CALCULATES THE MLE'S FOR ALPHA,BETA
674- IMPLICIT DOUBLE PRECISION (A-HO-Z)
675m COM4MON /BLANI~i/ XX(50),ZNC50),XS(5io),XP(50),XPHAT(50),XSAVE P(50)

01676x COMMON /I3LANX2/ AHATBHATA INIT,B INITtV
677= COMMON /BLANIC3/ SAVEA(10i)tSAVEBdi0I)
678= COMMON IBLANK4/ ISETSITERA .ISWANAtIVOPISTEPKDMN,IXSW
679z COMMON /I3LANICS/ SAVEV(59),V123(3),SAVELX(50).X'r123(3)
680= COMMON ICOM2I PI S(22PIAAi,A2A4X LIKCE
681= DIMENSION Y(50)tF(50)
682= EPSI = 0.001

*.683= MAX IT =I#0
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74

684: XLIK:E =0
-. . 685= ITERA = 0

686= IF(ISWANA.EQ.9) GO TO i
687= DO 2 liJD
688= CALL QUANTi(XP(I),Y (I))
689= 2 XPHAT(I = XP(I)
699= GO TO 3
691= I CALL INVNORaP,Y,CD)
692zC**
693z D020 1 a KD,
694z 20 Y() z Y(I/SQ2PI
695zC**INITIAL ALPHA,BETA BY LEAST SQUARES

* 696: 3 IP(IXSW.EG.0) GO TO 4
* .697z SUM14=:0.

698: XTX 90.
699: DOS I 1ICD
70 SUM SUMX + Xl(I)
701: 5 XTX z XTX + XX(I)*XI(I)
7e2= SSX = XTX - (SUMX*SUMX)/DBLE(XD)
703= XBAR: SUMI/DBLE(KD)
704: IXSW: 0
705: 4 CONTINUE
706: XTY =0.
707= SUMY z 0.
708: DO06 1 -ID
709= ITY a XTY + II I)*Y (I)
710: 6 SUMY = SUMY + Y(I)
71tz YBAR: SUMY/DBLE(KD)
712: SSP w XTY - (SUMX * SUMY)/DBLE(CD)
713z BRAT =SSP/SSX
714- AHAT z YBAR - BHAT*XBAR
7 15:C**NEWTON-RAPHSON PROCEDURE
716-C
7 17=C*'ITER
718a W2ITE(7,51)
71.9= St FORMAT(iHe,#** a *'

*729z 7 IF(ITERA.EQI.0) GO TO 8
* 721: SAVEACITERA) = AHAT

722- SAVEEUTERA) z EHAT
723- GO TO 9
724: 8 AINIT AHAT
725z EINIT BHAT
726a 9 IP(ISWANA.EQ.9) GO TO 10

* 727: CALL QUANCD(XPHATX.P)
728z 007011I
729z 10 CALL NORM:D(XPHATXX,CDF)
730: 1 IAi=$
731z A2=9
732a A4z9
733= Bi=*
734: B2=0
735= WRITE(7,52)
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* 736w 52 FORMAT(1H0,'** 2 *'

738= WRITE009) IXX(I),XPHAT()
739a 199 FORMAT(1H0,'ItXX (I),XPHhT(D= '452(P1.5))

* 748a w z IxtI) / CPHATW*(1. - XPIIATW))
* 741= FT x F(I)*F()

742a At aA + W*FF
743a A2 a A2 + XI(D*W*FF
744x A4 a A4 + XX(I)*XflW**FP
745. BB. aW*F(D*aSAVEP(D - XPHAT(D)
746a BI xBI +BB

*747- 12 B2 aB2 +DB*fl(D

749 53 FORMAT(iHO,'** 3
759= DET aAI*A4 -A2*A2
751- WRITE(7,54)
752m 54 FORMATIH,' 4 .
753= DET. a ./DET
754a ADELT a DET*(A4*B I - A2*B2)
755z BDELT a DET*(A i*B2 - A2*B I)
756a ADSAD a DABS(ADELT)
757= ABSBD z DABS(BDELT)
758a IF( (DMAX I(ABSAD.ABSBD).GE.EPSI).AND.(ITERA.LT.MAX ITl) 00 TO 14
759m GO TO 15
760= M AHAT aAEAT +ADELT
761a BRAT a BRAT + BDELT
762= ITERA - ITERA +1(~) 763=C**GO TO ITER
764a GO TO?7
765= 15 IF( 4DMAli(ABSADABSBD).GE.EPSI).AND.(ITERA.EMAZIT)) WRITE (7#16)
766a IMAXITI
767c 16 FORMAT(H0,'THE ITERATION PROCESS HAS BEEN STOPPED. CONVERO ENCE HA
768= IS NOT BEEN ATTAINED AFTER lt14,' ITERATIONS.')
769m Al a DET*A1
779z A2 a DZT*A2
771x A4 aDET*A4
772= XIIE a0.

- *773w DO 17 1u1,KD
774z YN n XN(I)
775z YS a XS(I
776.CU***4Q1 a DLOAMA(YN. +1. - DLOAMA(YS+1.) - DLGAMA(YN - YS +1.)

S 777*C** KEHL FIX DLGAMA NOT ON IMSL
778a XKMisDABS(GAMMA(TN+iJ)

-Ci779= X13MU2=DABS(GAlOI&(YS+iJ)
780 XKEHL3=DABS(GAMOA(YN-YS.1.))
781z Qi=DLOXXEHIi)-DLOGaXEHL2)-DLooazzm)
782. 17 VLIKE a XLIKE. +01 + YS.DLOGaXPHAT(l)) + (YN-YS)*DLOG(1.-XP HATI)
783- RETURN
784= END
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APPENDIX F

Computer Proorams for Section VI

The first two programs, SYMTST and ASYMTST, calculate the test sta-

tistic in equations 6.3 and 6.7 respectively. The input data should be

on TAPE 5 in the following order:

1.) First card - the logit regression coefficients BO and B1.

2.) Second card - title up 10 characters.

3.) Third card - N, the number of dose levels.

- 4.) Fourth through N+3 cards - the dose, number of subjects, number
of responses

.' The test statistic and its variance are both printed on the interactive

system display and written to TAPE 7.

The next two programs, SYMFIT and ASYMFT, uses an incremental pro-

cedure to fit the data to the models given by equations 6.1 and 6.5 re-

spectively. The value of lambda is incremented and new values of the

least squares coefficients are calculated until the log likelihood func-

tion is maximized. The input to the programs should be on TAPE 5 in ex-

actly the same order as 2 through 4 above, the first card is NOT used by

these programs.
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In PROGRAM SYMTST
2a REAL N(20)a (20),R(20),tHE(29),IBL(2),IBB(2,2),ILLTCUBE(20)

42 CHARACTER NAME*19
5z READ(5t*)B0,31

7a READ(5t'A )NAME

On DO 10 Iu11(U)(

12= R(I)u.5
13a MID IF
14. TEMPwB04D1*X(I)
15= TCIJ3E(D=TEI4p.*3
16a THEW.1a/(1.+EIP(-TEMP))
17=10 CONTINUE
18x U3.0.
19m ILL..
20= D029 1.1,2
21a IBL(I)s#.0
22a DO 30 J=,2
232 IBB(ItJ)u0.f
24830 CONTINUE
25=2B CONTINUE
26= DO 40 11,tNUM
27= FiCiumpN(I amHED* -THE(I))

*28= iLL=ILL+FACT.Tcu3EaW**2)/i44

29z PART. ((I (l)-N(D*THE(I))*TCUBE(l))/ 12
30a U=U+PART
31a IDL(1)zIBL(1)+(FACT*TCUBE(D)/ 12
32a IBL(2)uIBL(2)N(FACT*X (I)*TCUBE(I))I 12
33z IBB(1)zI33(1 ,1)+PACT
34m IBB(1 ,2)z133(1 2)4FACT*X (I)
35= 133 2t)=I3B(2 .2)+(FACT*Z (I)**2)
36240 CONTINUE
37a DET.133(11l)*IBB(2t2)-IB(,2)**2
38=C REDEFINE 1DS TO BE 133 INVERSE
39m TEMPI33(11)DET
48= 133(1,1)*IBD(2t2)/DET
41a IB(2o2)=TENP

* 42m 133(1 .2)w-IBB(1 ,2)/DET
43z 129(2,)ul33(l2)
44=C FINISH INVERSE ROUTINE
45= TIu0.0
468 T20.0
47a DO 50 11t2
49m TtIILCI)*IB3(It)+Tl
49. T2*13L(I)*IBB(It2)+T2
58 CONTINUE

51. VARmILL-(TI*13L(1).T2*(IBL(2)))
52w STD VffSRT( VAR)
53a PRINT*,USTDV



I~f.54m TEST VaU/STDV
55a PRINT*tTESTV
56m WRITE(7t'(A~o,3F20.1O)INXAMEUSTDVtTESTV
57a END
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in PROGRAM ASYMTS
2.REAL X(29),1Q0,tR(290,THE2OIBL(2)IBB(22ILL,FACT(20)

* . ~ 4w CHARACTER NAME*i@
5. READ(5t*)BOB1
6u READ(5,'AIMS)AME
7w READMS,*NUM
8z DO 1t Is1,NUI4
9a READ(5#*)X(I)tN(flN(D
Its X(D.ALOG(X(D)
tin IP(R(I)XEG) THEN

13m NDI

118CONTINUE

19a ILL.0.0
26. DO 20 1.1t2
21= IDL(I)z.f
22a DO 30 1#2
23m IBB(ItJ)=.#
243 CONTINUE
25.20 CONTINUE
26m DO 40 IsIoNUM
27m FACT(DmTHE(D.ALOG(1 *-THIDl

9m ILLILLI(FACT(I)I.2)*N(I)/E(I)
29m U.U4(PACT(D/THE(fl))u(R(D)-N(I).THE(I))
36= IDL(1).IBL(1)ePACT(I)*N(D)*(1.-THE(I))
31. BDL(2)uIBLQ)+FACTUI)*N(I)*X(I)(.-THEI)
32w IB3(l,1).IDB(1,1)eN(D.TBE(I).(1.-TIE(I)
33m 133(1 ,2).IBB(1 ,2)4NU)X (I)*THE(I)*(1.-THE(I))
34. IBB(2t2).IBB(2,2).N(D.(X(I)*.2)TIE(D*(1 .-THE(I))
35.40 CONTINUE

9'362 DETIBB(1,)*I322)-IfBlt12).#2
37aC REDEFINE 133 TO BE 133 INVERSE

d38m TEMPIBB(l1i)/DET
*39. I9331,U.13922)DET

40m IBB(2s2).TEXP
56 133(1,2)w-133(1 ,2)/DET
51. IBB(2ti)131(1,2)

* 528C FINU INVERSE ROUTINE
53m Tim.@
54m T20
55a DO 50 1=6,2
56m TIL(fl*133U,1)'TI
57m T2*13LII)*IDBU,2)+T2

58 CONTINUE
3 9. VARBILL-(TI*IBL(1)+T2*(IDL(2)))
660 5Th VuSORTM AR)
die PRINT*tU.TDV
62s TEST1 VwU/S'IDV
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63. PRUIT*ITESTV
64. WRITE(7,'(A i@3F2*.1@)')NAMEU.STDVTESTV
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In PROGRAM SYMFIT
22 IMPLICIT DOUBLE PRECISION(A-HtO-Z)
3a COMMON/SETI/1X(20)tXP(20)TAUC2O).XLAMDA AHATBHA TN(20)
4z COM14ONISET2INUMIXSW
52 REAL IS'TATtIDFtJQUE
6z DOUBLE PRECISION MLEHATR(20),PI(20)#THE(20)
7a CHARACTER XAME*20
on IXSW-i
9z CHECXKil#00.
19= CHXLf.IK-99999999.
Its PRINT''NAME?'
12m READ(*t'(A20)')NAME
13a READ(5,*NUM
14z IDP=NUM-2.
15= DO 10 IN=INUM
16= READ(5,*)XIN)N(IN)MRIN)
17z X(IN)-DLoGaaiO)
lox IPWRIN)SE. #JR(IN)=.5
19= XP(IN)=R(IN)/N(IN)
20=10 CONTINUE
21a INCLAM-O
22= DO 20 Jzi,200
23. XLAMDADBLE(INCA)/100.
24= INCLAMzINCLAM+1
250 XLLF*0.O
262 CALL LSE

J27z STATz0I)282 ILIKE-9.0
29* DO 30 Im=1NUM
3s= FACTsZ.*XLAMDA*(AHAT.DHAT*X (I))

* 31a IF(DABS(P&CT).LT. 1. AND. FACT .NE. 0.) THEN
32m Tla(l.4FACT)**(l/XLAMDA)

34= TJAE(I)=TiI(Ti*T2)
35. ELSE IP(PACT.EO. 0.0) THEN

*36x THE(I)=i/(1+EXP(-AHAT-BAT*(I)))
37v ELSE IF(FACT.LE. -1.) THEN
38= THE(I)z.999""999
398 ELSE
40. THEUDa.900800
41m ENDI?

*42z EXPECTzN(I)*THE(D
43a DIFPSQs(R(I)-EXPECT)**2

*44= TEST=DIFPSQ/(EXPECT*(i.-THE(I)))
45a STATaSTAT4TEST
46- XLIKE.ZLIKER(I)*DLOG(THE(I))4G()-R(l))*DLOG(i.-THEl))
47=30 CONTINUE
488 IF(STAT.LT.CHECIDTHE2I
49s DO 40 KKzitNUM
50- PPIXOCD.THE0M
51240 CONTINUE
528 CHECKuSTAT
5::w CIKLIKwX LIKE
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54m XLEHATEXLAMDA
55m B0.AHAT
568 BlwDHAT
57m END IF
50.20 CONTINUE
59. NRIatE(7'6.4.2F20.15))XLE(ATB
60 MRITE(7*)CHXLIK
&is XRITZ(7,'(A2O)')XAXE
62. WRITI(7te*flIRZ ARE ',NDM, DATA POINTS.'
630 mnwoB(,)

- 64a HRIT(7t*)
65. NRIT(7t*)

WRI NTE(7t)'XITBF LAUNCHES ABORTS FRED APT PROS

67. DO 56IuINXUM
68a EXPECT.I(D*PFIN(D
69. DIFPSQa(R(fl-EXPECTh.*2
70z TESTwDIPFSQ/(EXPECT*fi.-PFI(D))

72z +=EPECT#PFIN(I)TEST
7348 CONTINUE
74a ISTATu4EAL(CHECD)
75m CALL XDCH(ISTATIDFIQUEtIER)
76= PCHIu1.-IQ2UE
77= WRITE(7,*)
78m WRITE(7t*)' TEST STATISTIC CHI-SO TAIL PROD'
79a WRIT(7'(31,FiO.6,15X1F7.5))CHECKPCHI

0 80 END
82= SUBROUTINE LE
83w IMPLICIT DOUBLE PRECISION(A-HtO-Z)
84= COXXON/SETi/X (20 ZP(29),TAU(2*)ZXLAXDAAHATBEHATN)
85a CO1MON/SET2/NUNIlSW
86. DOUBLE PRECISION NCO)
87m DO I 1IlNUX

W8 I~aLAMDA.EG 8O0) THEN
89= TEmkP.xP(I/(I.-XP(I))
90m TAUWU)DLOGCMP)
91. ELSE
92a TEMPi.(1.-X())**XlAXDA

9 93= TENP2XP(I)*XLAMDA
4 94a ZNUM=2*(TEMP2-TEMPI)

95m XDENOM.XLAMDA*(TEMP2+TEMPI)
96= TAU(DmXNUM/XDENOM
97z END IF
98.1 CONTINUE
99. IP(IXSU MI 0.) GOTO 4
too= SUMIX0.
loin SUWS.#.
102*C SET UXW=0 IF UNWEIGHTED, LS IS WANTED SET TO
i0*C ANYTHING ELSE FOR WEIGHTED LS
14. UW4.



105a ITX0O.
106= DO 5 I=i,NUX

*107z WUI)uDBLE(N(I))*XP(I*(1 .- XP(I))
Its= IF(tINw..)THEN
19 WW=1i.
11es SUMW=SUMW.WN(I)IIII= ELSE
112a SUwmWSumw.W(I)
1132 END IF
11j4a SIJMX=SUN!4X W)*W(I)
115= XTXaTX+ZU)H2)*W(I)
11635 CONTINUE
117z SSXXTX-(SUMX**2)/SUMN
118= XBAEBSUMI/SUXW
119a 11511=0
120=4 CONTINUE
121a XTYu9.
122z SUMYOe.
12a DO6IzU
124= XTY=XTY4X(I)*TAU(I)*N(I)
125a SUMY=SUMY.TAu)w~i)
12626 CONTINUE
127m YBAR=SUXYISUMW
128c SSP--XTY-(SUMX*SUMY)/SUXW4

130a AHAT-YDAR-DHAT*XDAR
121a REATUNPS

13zpN
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135- PROGRAM ASYMPT
136= IMPLICIT DOUBLE PREC ISI ON(A-HOD-Z)

1372 COMMON/SETI/I!(20),XP(29),TAU(20),XLAMD&.AHiAT,BHA T,N(20)
138= COM24ON/SET2/NUMIXSW
139= REAL ISTATtIDFIQUE
140= DOUBLE PRECISION MLEHATtR(2),PFIN(20),THE(28)
141a CHARACTER NAME*68
142a IXSwIl
143a CHECKvi#eee.
144z CHKLIKC-999999999
145a PRINT*t' NAME?'
146-= READ(*t'(A60)')NAME
147c READ(5,*)NUM
148x IDFzNUM-2.
149a DO 10 IN=1,NUM
15O= READ(5t*)I(IN)t1UflOR(IN)
151. 1 (IlD=DLOGCC (IN)
152= IF(R(I1O.EG. 0.)R(flD=.
153a XP(INJ=R(IX)IN(IN)

154= IF(IP(IN).EQ.1 )XP(flO=.9999
155=19 CONTINUIE
156= INCLAMM-50I157m D029 Ju1,1000
158= XLAMDAADBLE(INCL.AID/i.
159. INCLAMsINCLAM+1
160- ILLF=6.8
161a CALL LSE0162a STATzG
163- XLIZE=.l
164a D039 I=1NUI4
1658 FACT=2XLAXDA*EIP(AHAT'BHAT*1 (I))
166-T IP(PACT.GT. -I. .AND. PACT .ME. 6.) THEN
1673, T1=(i.4FACT).*(-1./IAMDA)
168m THE(DI.-TI

* 169- ELSE IF(FACT.EQ. 0.6) THEN
* 17#= THE(I)a 1.-EIP(-EP(AHAT+BHAT*X (I)))

171a ELSE IF(FACT.LE.-i.) THEN
172w THE(D).9999999999

*173= ENDIP
174= EPECTxN(I)*THE(I)
175- DIFFSQ(R(I)-EXPECT)**2

176= TEST.DIFFSG/(EXPECT'(1.-THE(I)))I177= STAT*STAT+TEST
178z XLIKCExXLIKE+R(I)*DLOG(THE(I))+4N(D-RWI)*DLDG(1 .-THE(I))
179=36 CONTINUE
186. iFaLIKE.GT.CHrLIIDTHEN
1812 DO4II1alNUM
182a PPIm(KDTHEOCK

-'183=49 CONTINUE
184m CHECKwSTAT
185= CHKLIKBXLIKE
196= MLEHATuILAMDA
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187- BO=AHAT
188= BlzBHAT

1"=2 CONTINUE
191= WRITE(7,'(FiO.5,2F20.15))MLEHATDG.Bi
192a WRITE(7,*)CHXLIX
193a PRINT*,MLUAT
194z WRITE 7,' A60) NAMEDAAPIT.
195a WRITE(7t*)'THEREAR tUtDTAPIS.
196z WRITEC7,*)
197=t WRITE(7#*)
198a WRITEC?,')

lwli WRITE(7,*)' MTDF LAUNCHES ABORTS FRED AET PROD

2"s DO S0 IsA1,UM
201= EXPECT=N(I)*PFIN(I)
262a DIFFSQ=(RU)-EXPECT)**2
203= TESTuDIFPSQ/(EXPECT*(l.-PFIX(I)))

IMAWRITE(7,'(3F7.0,71 ,P9.551F6.5,3X ,P7.4) '1),EZEAL(N(I)

*205a *,EXPECTPPINa)#TEST
206=50 CONTINUE
207a ITATuREAL(CMECK)
208= CALL MDCH(ISTATtIDFtIOUEtIER)
209z PCHIs1.-IQUE
210= WRITE(7t*)
211=z WRITE(7W) TEST STATISTIC CHI-SO TAIL PROD'

*212a WRITE(7,'(3X,PIB.6,151,F7.5)')CHECLtPCHI
213m WRITEC7#u)
214a END
215a SUBROUTINE LSE
216z IMPLICIT DOUBLE PNECISION(A-HO-D)

9 217a COMMON/SETI IX 2#)tXP20)TAU(20)XLAMDAAHATtBHATN(20)
218v COMMONISMT2IUA,IXSW
219a DOUBLE PRECISION W(29)
220a DO i ImItNUN

'p 221a iiaLAMDA.E. 0.0) THEN
222m TFMP=.I(1.-Xp(I))
223z TAUlI)zDLO0(DLOO(TEMP))
224- ELSE
225- TEMPI4I .-XP(D)*I(-XLAMDA)
226-= TEMP2=(TEMPl-1.)IXLAMDA
227w TAU(I)=DLOO(TEMP2)
228z EWDIF
229=1 CONTINUE
230= IP(IXSW LU. 0.) GOTO 4
231a SU14XaO.
232a SUXNw0.0
233*C SET URW=0 IF YOU WANT UNWEGHTED LS,IF NEED WEIGHTED
234-C SET UNW TO ANYTHING BUT I (ONE)

*235a UNWOf.
236= XTX-O.
237m DO 5 =1,NUM



238= W(I)-DBLE(N(I))*IP(I)*(1 .-XPI))
-239= IF(UNW.Eg.O.)THEN

~ ~C.240z WW=1 .
241= SUMWZSUI4W+W(I)

*242a ELSE
- -243= SUl4W=SUMW.W(I)

244- END IF
245r- SUMI=SUMX+X(I)*W(I)
246s XTX=XTXNXI).*2)*W(I)
247=-5 CONTINUE
248= SSXXTX-(SUMX*42)/SUN
249a XDAR=SUMI/SUMW
250a IXSW=0
251=4 CONTINUE
252= ITYxf.
253= SUMY=9.
254= DO 6Ilzi,NU?4

* .255= XTY=XTY+X(I)*TAU(I)*W(I)
256z SUMY=SUMY +TAU(I)*W(I)
257=6 CONTINUE

* -258x YBAR=SUMY/SUI4W
259z SSP=XTY-(SU4XSUMY )/SUMW
269z BRAT=SSPISSX

*261n AHAT=YDAR-BHAT*XBAR
262a RETURN

263z END

.00
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